Lecture 2: Numerical Analysis Review

Computational Acoustics, © V. Sparrow/PSU, 2000

Reference: Much of this lecture is taken from Section 1.5 of Rubin H. Landau and Paul J. Fink, Jr., A scientists and engineer’s guide to Workstations and Supercomputers (John Wiley, New York, 1993). Some other references are listed at the end of this lecture.

Last time:
- Syllabus (anyone else need one?)
- Computer availability

Access accounts:
- Do you have yours yet?

E-mail list
- Are you on yet?
- Please sign the sheet being passed around.

Reading assignment for next time:
- Chapters 1 and 2 of Todino, Strang, and Peek)
Representing Numbers on Computers

Computers can only represent mathematical quantities using

1. Alphanumeric characters
 → Symbolic representation (talk about later)
2. Integers, finite number of bits
3. Floating point numbers, finite number of bits

Memory requirements for the number 160,000:

\[
2. \quad < \quad 3. \quad < \quad 1. \\
\text{(most compact)} \quad \text{(least compact)}
\]
Bits and bytes:

Bits are 1’s and 0’s: 00011010001110110110001001011010 . . .

Recall the following:

- 1 bit = 1 b = either one 0 or one 1 (ON or OFF)
- 1 byte = 1 B = 8 bits = 1 alphanumeric character (“9”, “c”, “+”, etc.)
- 1 K = 1 KB = 2^{10} bytes = 1024 bytes (\neq 1000 bytes)
- 512 K = 2^{19} bytes = 524,288 bytes
- 1 MEG = 1 MB = 2^{20} bytes = 1,048,576 bytes
- 1 GIG = 1 GB = 2^{30} bytes = 1,073,741,824 bytes

1 page of text is about 3 KB

Computations with integers:

N bits: $n_1, n_2, n_3, \ldots, n_N$ where n_i are 0 or 1
- can represent 2^N integers
It is standard for n_1 to determine whether the integer is positive or negative:

\[n_1 = 0, \Rightarrow \text{positive integer} \]
\[n_1 = 1, \Rightarrow \text{negative integer} \]

This lets us represent integers in the range (of only)

\[-2^{N-1} \text{ to } 2^{N-1} - 1 \]

4 byte integers are a standard on many computers today, and the range is

\[-2,147,483,648 \text{ to } 2,147,483,647 \]

Overflow: when you try to represent an integer larger than the computer’s range allows.

Strange things can happen when you try to go outside the range.

Sometimes your computer will give you a warning message, but sometimes it will give you garbage.
Example programs creating overflow for integers (4 bytes or 32 bits)

Start with binary 0 = 000000000000000000000000000000

Add
\[2^{30} = 010000000000000000000000000000 \]

Add
\[2^{29} = 001000000000000000000000000000 \]

Add
\[2^{28} = 000100000000000000000000000000 \]

. . .

Add \[2^0 = 000000000000000000000000000001 \]

Get

\[011111111111111111111111111111 = 2,147,483,647 \text{ decimal} \]

What happens when we add 1 to this? [See program handouts.]
Pro’s and Con’s for integers:

Con: Can only represent integers.
\[3/2 = ? \]

Pro: Don’t have roundoff error which we have for . . .

Floating point numbers:

Represent by a sign bit \(s \), a mantissa, and an exponential field, \(\text{expfld} \), as

\[x_{\text{float}} = (-1)^s \times \text{mantissa} \times 2^{\text{expfld} - \text{bias}} \]

For 32 bit (4 byte) floating point numbers, called **single precision numbers**:

Have

- 1 sign bit, \(s \)
- 8 bits for the exponent, \([0, 255]\)
- 23 bits for the mantissa

\[\text{mantissa} = m_1 \times 2^{-1} + m_2 \times 2^{-2} + \ldots + m_{23} \times 2^{-23} \]
The bias (usually 127) is used to keep the expfld stored as all positive numbers. The range is roughly

\[2.90 \times 10^{-39} \text{ to } 3.40 \times 10^{38} \]

Example: \(0.5 = 0 \ 0111 \ 1111 \ 1000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 000 \)

For 64 bit (8 byte) floating point numbers, called double precision numbers:

Have

- 1 sign bit, \(s \)
- 11 bits for the exponent
- 52 bits for the mantissa

The range is roughly

\[10^{-322} \text{ to } 10^{308} \]

These are good ranges. \(\frac{\text{size of universe}}{\text{size of proton}} \approx 10^{24} \)
Problems for floating point numbers:

For 32 bits, (similar for 64 bits)

1. If you try to represent a number larger than 3.40×10^{38}, you have an overflow. This is similar to what we have for integers:

$$3 \times 10^{38} + 3 \times 10^{38} = \text{JUNK}$$

2. If you try to represent a positive number smaller than 1.2×10^{-38}, you have an underflow. This is new. An underflow occurs when we try to represent a number closer to zero than the computer allows.

3. Can have roundoff error. Roundoff error occurs because computers represent numbers with a finite number of bits. It may be easiest to see this by a simple addition:

If we add $1.0 + 1.0 \times 10^{-7}$, we expect

$$1.0000001$$

However, for 32 bit floating point numbers we instead get

$$1.0$$
This is because single precision numbers only have $6 - 7$ digits of precision, and the small part we added to 1.0 was lost. This is a simple example of roundoff error.

Precision in scientific/engineering computing:
Double precision numbers have approximately 16 digits of precision. You can also have overflow, underflow, and roundoff error with double precision numbers, but this is less common.

If in doubt, use double precision!
Then if you add $1.0 + 1.0 \times 10^{-7}$ you get 1.0000001.

Machine precision:
This is a useful definition we will need later:
Definition: the machine precision of a computer is the largest positive number ε such that

$$1.0 + \varepsilon = 1.0$$
Please note that the machine precision is NOT the smallest number the computer can represent! Some authors define machine precision differently, but the above definition is becoming a standard. Note that single and double precision numbers will have different machine precisions.

Accounting for precision is very useful, since we can then minimize roundoff error. Can you guess what is the best way to add up a list of many numbers whose absolute values are different by many orders of magnitude?

[answer given in class]

This is a good thing for people in acoustics to understand. When finding the total power in a spectrum, the spectral components may differ by many dB.
How poor can a calculation be?
Assume there are M floating point operations.
If you are lucky,

$$\text{error} \propto \varepsilon \times \sqrt{M}$$

But it is often the case that

$$\text{error} \propto \varepsilon \times M$$

This means your final answer can be way off without you knowing it. Some calculations create MUCH LARGER ERRORS!

Example difficulty: The subtraction of two nearly equal numbers
Recall that the quadratic equation

$$ax^2 + bx + c = 0$$

has the solutions

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
The difficulty you don’t learn in high school is when $4ac \ll b^2$ in the + root:

$$x = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$

This looks very similar to

$$x = \frac{-b + (b - \text{tiny})}{2a}$$

and you are subtracting nearly equal numbers.

The result is a severe loss of precision.
Some excellent related references:

