References:

Last time: FD boundary conditions and introduce 1-D parabolic equation.

Reading assignment: Franke and Swenson, “A brief tutorial on the fast field program (FFP) . . .”

History of PE in acoustics (abbreviated):
- First came: “Fourier split step PE” — late 70s to early 80s
 - some situations
- Next came: “Implicit finite differences PE” — mid to late 80s
 - many situations, can be slow
- Today: “Green’s function PE” (Gilbert and Di) — 90s
 - more general situations
 - like Fourier split step but can be faster
 - still gaining acceptance

Angle limitations on the PE

The PE we derived previously, in which we threw out the \(\frac{\partial^2 \psi}{\partial z^2} \) term, is only valid for angles within \(\pm 20^\circ \) of horizontal. Thus, it is called a narrow angle PE.
For years people have worked on improved versions. The usual approach is to factor the Helmholtz equation as

\[
\left(\frac{\partial}{\partial r} + i\sqrt{Q} \right) \left(\frac{\partial}{\partial r} - i\sqrt{Q} \right) p = 0
\]

where \(Q \) is an operator. The forward going part is

\[
\frac{\partial p}{\partial r} = i\sqrt{Q}p
\]

The essence of a wide angle PE is a very accurate approximation of \(\sqrt{Q} \).

If we write \(\sqrt{Q} = k_0\sqrt{1+q} \), there are many available ways to approximate \(\sqrt{1+q} \). One of the most accurate is by several terms of a Padé approximation. (See pp. 347-357 of Jensen, et al.) A two term Padé approximation yields a PE sufficiently accurate for angles \(\pm 55^\circ \) of horizontal. Five terms is accurate for angles \(\pm 75^\circ \).

See pp. 38–41 of West, Gilbert, and Sack for an example implementation.
Wavenumber integration methods:

- major competitor to the PE over the years
- assumes a vertically stratified medium, $c = c(z)$
- SAFARI is one such code used in underwater acoustics, another is

The fast field program (FFP)

Like SAFARI and other wavenumber integration programs, the FFP is based on a Green’s function solution of the Helmholtz equation.

Assume a point source at $(0, 0, z_s)$:

$$\nabla^2 p + k^2 p = -4\pi \delta(x, y, z - z_s)$$

where $p = p(\vec{x})$ is the complex amplitude for a particular frequency ω and

$$k = \frac{\omega}{c(z)}.$$

Note that $c = c(z)$ only! The speed of sound cannot depend on range r.

Rewrite in cylindrical coordinates (r, ϕ, z) assuming no variations w.r.t. ϕ:

$$\frac{\partial^2 p}{\partial r^2} + \frac{1}{r} \frac{\partial p}{\partial r} + \frac{\partial^2 p}{\partial z^2} + k^2 p = -\frac{2}{r} \delta(r) \delta(z - z_s)$$
Transform domain solution
Solve in the transform domain. Since in cylindrical coordinates, use zeroth order Hankel Transform:

- Forward transform:

\[\hat{p}(K, z) = \int_0^\infty p(r, z)J_0(Kr)rdr \]

- Inverse transform:

\[p(r, z) = \int_0^\infty \hat{p}(K, z)J_0(Kr)KdK \]

where \(\hat{p} \) is the Hankel transform of \(p \).

[see handout on Hankel transforms]

If you do the Hankel transforms:

\[\frac{d^2\hat{p}}{dz^2} + [k^2(z) - K^2] \hat{p} = -2\delta(z - z_s) \]
Solving the transformed equation

\[
\frac{d^2 \hat{p}}{dz^2} + [k^2(z) - K^2] \hat{p} = -2\delta(z - z_s)
\]

is a 1-D inhomogeneous Helmholtz equation which should be solved in the \(z \) direction. (The \(r \) direction solution will be given by the inverse Hankel transform once the above equation is solved.)

To solve, Franke and Swenson break it up into 2 first order equations. Recall Euler’s equation (\(e^{j\omega t} \) notation assumed) in the \(z \) direction:

\[
j\omega \rho_0 u_z + \frac{dp}{dz} = 0 ,
\]

and taking Hankel transforms,

\[
j\omega \rho_0 \hat{u}_z + \frac{d\hat{p}}{dz} = 0 .
\]

If we take the derivative of both sides of this equation w.r.t \(z \) we have

\[
\frac{d\hat{u}_z}{dz} = \frac{j}{\omega \rho_0} \frac{d^2\hat{p}}{dz^2} .
\]
Thus, we can rewrite

\[\frac{d^2 \hat{p}}{dz^2} + [k^2(z) - K^2] \hat{p} = -2\delta(z - z_s) \]

as

\[\frac{d \hat{p}}{dz} = -j\omega \rho_0 \hat{u}_z \]

and

\[\frac{d \hat{u}_z}{dz} = \frac{j}{\omega \rho_0} \left(-[k^2(z) - K^2] \hat{p} - 2\delta(z - z_s) \right) \cdot \]

Swenson and Franke then solve these two coupled equations in an ANALOGY with Inhomogeneous Electrical Transmission Lines:

- voltage \(V \) is analogous to pressure \(\hat{p}(K, z) \)
- current \(I \) is analogous to particle velocity \(\hat{u}_z(K, z) \)

Once \(\hat{p}(K, z) \) is known, the inverse Hankel transform gives \(p(r, z) \).
Approximating the inverse transform

The inverse transform is

\[p(r, z) = \int_0^\infty \hat{p}(K, z) J_0(Kr) K dK \]

where we integrate over wavenumber. This is why the FFP is called a wavenumber integration method.

Doing the integration directly can be very slow. Instead, we make some approximations in the above equation. Recall

\[J_0(Kr) = \frac{1}{2} \left[H_0^{(1)}(Kr) + H_0^{(2)}(Kr) \right] , \]

and if we only have outgoing waves

\[J_0(Kr) = \frac{1}{2} H_0^{(2)}(Kr) . \]

In the far field where \(Kr \gg 1 \), one can approximate

\[H_0^{(2)} \approx \sqrt{\frac{2}{\pi K}} \frac{e^{-j(Kr-\pi/4)}}{\sqrt{r}} \]
Hence, an approximate version of the inverse transform is

\[p(r, z) \approx \frac{1 + j}{\sqrt{2\pi r}} \int_0^\infty \hat{p}(K, z)e^{-jKr} \sqrt{K} dK \]

This integral is approximated by

\[p(r, z) \approx \frac{1 + j}{\sqrt{2\pi r}} \int_0^{\text{BIG}} \hat{p}(K, z)e^{-jKr} \sqrt{K} dK \]

which has a finite integration range.

Where the FFP gets its name

Integrate using a fast Fourier transform (FFT) after rearranging:

\[p(r, z) \approx \frac{1 + j}{\sqrt{2\pi r}} \int_0^{\text{BIG}} \left(\hat{p}(K, z)\sqrt{K} \right) e^{-jKr} dK \]

In addition a small amount of damping is added to avoid any possible poles along the \(K \) axis. Since the inverse Fourier transform of \(\hat{f}(K - j\alpha) \) is \(f(r)e^{-\alpha r} \), we use

\[p(r, z) \approx e^{\alpha r} \frac{1 + j}{\sqrt{2\pi r}} \int_0^{\text{BIG}} \left(\hat{p}(K - j\alpha, z)\sqrt{K - j\alpha} \right) e^{-jKr} dK \]
where α is called an artificial attenuation. This attenuation is particularly important for avoiding a branch point which occurs at $K = \omega/c_{\text{top}}$ where c_{top} is the sound speed of the top layer. At that wavenumber $\hat{p}(K,z) \to \infty$. (See pp. 237-238 of Jensen, et al.)

Caveats
- Because of the artificial attenuation, the FFP is not good for long ranges.
- $c(z)$ only!
- The ground impedance cannot vary with range.

Benefits
- FFP is probably the most accurate method for short ranges. (Much more accurate than a PE for large angles.)
- For a run with a source at a particular height, the FFP gives you solutions at all ranges in one solve.
Summary of Propagation Methods

Ray Theory: [Numerically step rays by carefully monitoring the direction cosines of the rays, depending on $c(\vec{x})$. See Chap. 3 of Jensen et al. See also Chap 8 of Pierce and pp. 117–120 of Kinsler, et al.]

- almost any environment is OK.
- very flexible, but sensitive to environment.
- bad: low freq.
- bad: often need to calculate many, many rays.
- must do special things when encounter caustics and shadow zones.

Normal Mode Theory: [Numerically calculate orthogonal modes of underwater “duct” for complicated $c(z)$. See Chap. 5 of Jensen et al. See also p. 430 of Kinsler, et al. for analytical version.]

- assumes $c(z)$ only.
- heavily dependent on the boundary conditions to find the modes.
- must find roots of characteristic equation accurately and uniquely.
- difficulties for deep water?
FFP (wavenumber integration):
— assumes \(c(z) \) only.
— possibly the best method for moderately short ranges for fixed freq.
— each run gives you \(p \) at one height and one \(\omega \) for ALL ranges
— inefficient for the calculation of pulses.

PE:
— almost any environment is OK.
— typical finite difference or Tappert formulation can be slow, really slow for high frequencies and long ranges.
— what value of reference wavenumber \(k_0 \)?
— what is a good starting field?
— only good within certain angles
 → problems with moderately short ranges (angle violations)

Next time: Start working toward finite elements.