Laboratory observation of elastic waves in solids
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Compressional, torsional, and bending waves in bars and plates can be studied with simple
apparatus in the laboratory. Although compressional and torsional waves show little or no

dispersion, bending waves propagate at a speed proportional to /f . Reflections at boundaries lead

to standing waves that determine the vibrational mode shapes and mode frequencies. Boundary

conditions include free edges, simply supported edges, and clamped edges. Typical mode shapes
* and mode frequencies for rectangular bars, circular plates, and square plates are described.

L. INTRODUCTION

There are many different types of waves in nature. Wave
motion has always been a unifying theme throughout phys-
ics. The study of waves draws us into nearly all the tradi-
tional branches of physics: mechanics, thermodynamics,
electromagnetism, quantum mechanics, light, and sound.

One of the authors recently had the pleasure of reviewing
a reprinted textbook' from the 1960s when unified courses
on wave motion were a part of most physics curricula. Un-
fortunately, many students these days do not experience
the benefits of such a course. Furthermore, their laboratory
experience with waves is limited, perhaps, to brief en-
counters with transverse waves on a stretched string, sound
waves in an air-filled resonance tube, and visible light
waves. Even in high-school physics courses, highly instruc-
tive ripple tank experiments are giving way to computer
simulations. This trend is an unfortunate one, we believe.

The purpose of this paper is to call attention to some
interesting properties of mechanical waves in elastic solids,
and to describe three laboratory experiments on wave
propagation in bars and plates that can be done with inex-
pensive equipment in the introductory or intermediate lab-
oratory. They also form the basis for extended experiments
using more sophisticated equipment.

As in all wave experiments, the student should be re-
minded of the similarities in wave behavior. For example,
the dispersion relationship for bending waves in a thin bar
is quite similar to that of the de Broglie waves associated
with a free electron.

II. WAVE PROPAGATION IN SOLIDS

The foundation for wave propagation in solids, as in
fluids, lies in three conservation laws: conservation of ener-
gy, conservation of momentum, and conservation of mass.
These conservation laws can be expressed either in the La-
grangian or Eulerian representation, depending upon
whether the boundary conditions are relatively fixed or
moving. In a fluid, it is common to use the Eulerian de-
scription, in which the velocity, at a certain position and
time, refers to the fluid element that happens to be at that
position. In a solid, on the other hand, it is usually more
convenient to use the Lagrangian description in which the
motion of a particular element of the solid is followed.2 A
compact history of the study of wave propagation in elastic
solids is given by Davis.?

2. Longitudinal waves in a bar

The best waves to consider first are the quasi-longitudi-
nal compressional waves in a thin bar or rod, which propa-
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gate at a speed given by

¢, =VE/p, (1)

where E is Young’s modulus and p is density. These waves
are called quasi-longitudinal for the following reason: Al-
though the transverse stresses are zero, the transverse
strains are not; as a rod stretches, it grows thinner. The
ratio between the longitudinal strain €, and the transverse
strain €,, is Poisson’s ratio v= — €,,/€;,. '(Likewise,
Young’s modulus is defined as the ratio of axial stress to
axial strain in a thin rod.)

Compressional waves in a thin bar or rod are described
by a one-dimensional wave equation of second order:
d*w/dt* = 3 J*w/Ix?, where w(x,t) is the axial displace-
ment of a small volume element. The general solution of
this wave equation is the d’Alembert solution:
w=f (c .t —x)+f;(c .t + x), where f; and f, are arbi-
trary functions and the waves are nondispersive (i.e., their
speed ¢, does not depend on frequency).

In a thick bar or rod, the longitudinal wave speed de-
creases slightly at high frequency due to the effects of later-
al inertia. According to Love’s theory, the longitudinal
wave speed is approximately ¢, = ¢, /1(1 +v*K?k?)'/?,
where v is Poisson’s ratio, K is the radius of gyration for the
cross section (half the radius for a rod of circular cross
section), and k is the wave number.*

B. Torsional waves in a bar

A lateral displacement 7 which varies with x gives rise to
a shear strain €, = dn/dx. For small deformations, the
shear stress o, is proportional to the strain, and we define
the shear modulus G as the ratio of stress to strain
(G =0,,/E},) in a thin rod. In a thin rod, torsional shear
waves travel at a speed given by

CTZVG ’ (2)

which is always less than longitudinal wave speed. In fact,
G and E are related by the equation E = 2G(1 + v), so
cr/e; = [2(1 4+ v)] 2. For aluminum, v = 0.33, and
so the ratio of torsional to longitudinal wave speed in a
round aluminum rod is 0.61. The wave equation for tor-
sional waves is also a one-dimensional wave equation
3%6 /9t = ¢ 3%0 /3x*, so torsional waves are nondisper-
sive.

The torsional wave speed in a bar of rectangular cross
section is less than that of a rod with circular cross section.
For square cross section, ¢, = 0.92yG /p; when the width
is twice the thickness, ¢, = 0.74{/G /p; when the width wis

more than six times the thickness %, ¢, = 2(h /w)\/G /p.
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Torsional modes in a bar or rod with free ends have fre-
quencies equal to the torsional wave speed times n/2L,
analogous to the longitudinal modes. If one end of the bar is
clamped, the frequencies and mc,./4L (m =1, 3,5...).

C. Bending waves in a bar

Although the compressional and torsional wave speeds
in a bar show little or no dispersion (i.e., frequency depen-
dence), this is definitely not the case with bending waves,
whose speed is nearly proportional to yf. Bending waves
involve both compressional and shear strains.

When a bar is bent, the outer side is stretched and the
inner side is compressed; somewhere between is a neutral
axis whose length remains unchanged. The simplest theory
for such bending motion is the Euler-Bernoulli beam theo-
ry, which gives accurate results in thin bars and rods at low
frequency. The Euler-Bernoulli equation of motion can be
written

d’  —EK? 3%

or? p x*’
where Eis Young’s modulus, K is the radius of gyration for
the cross section, and p is density. This equation of motion
differs from the wave equations for compressional and tor-
sional waves in that it is a fourth-order equation; f (vt + x)
is not a solution. Harmonic solutions may be obtained by
substituting y(x,?) = ¥(x)e™, giving a solution with four
arbitrary constants to be determined from the end condi-
tions,

Y(x) = A cosh(wx/v) + B sinh(wx/v)
-+ Ccos(wx/v) + Dsin(wx/v). (4)

Harmonic waves propagate at a phase velocity that is pro-
portional to the square root of frequency and also to the
square root of the longitudinal wave speed ¢, :

v=.2nfc, . (5)

The dispersion relationship w = ¢; Kk * has the same form
as that of de Broglie waves for a free particle. The group

(3)

velocity is twice the phase velocity (v, = dw/dk = 2v).

Although the relatively simple Euler—Bernoulli beam
theory gives an accurate description of bending waves in a
thin beam or rod at low frequency, it predicts too low a
wave speed in a thick bar or a bar vibrating at high frequen-
cy. For one thing, it assumes that plane sections remain
plane, which is equivalent to neglecting shear deforma-
tions. For another thing, it neglects rotary inertia. In Timo-
shenko beam theory, appropriate terms are added to the
equation of motion to account for the effects of shear defor-
mation and rotary inertia.>®

1. End conditions

The modes of transverse vibration in a bar or rod depend
upon the end conditions. Three different end conditions are
commonly considered: free, simply supported (hinged),
and clamped. For each of these a pair of boundary condi-
tions can be written. At a free end, there is no torque and no
shearing force, so the second and third derivatives are both
zero; at a simply supported end, there is no displacement
and no torque, so y and its second derivative are zero; at a
clamped end, y and its first derivative are zero.

2 3
Free end: 9y =0, 9y =0 (6a)
ax? x?
%y
Supported end: y =0, =0 (6b)
ox?
Clamped end: y =0, %y_ =0. (6¢)
Ix

There are six different combinations of these end condi-
tions, each leading to a different set of vibrational modes.
Three of the more common combinations are shown in Fig.
1.

2. Modes of a bar with free ends

Applying the boundary condition (6a) to both ends of a
bar leads to an equation’

tan (wL /2v) = + tanh(wL /2v), 7N

Fig. 1. Bending vibrations of a bar or rod with
three different sets of end conditions: (a) both
ends free; (b) one clamped end, one free end;
(c) two supported (hinged) ends. The
numbers are relative frequencies; to obtain ac-

4.50 tual frequencies, multiply by 7K /L *JE /p.

(a). (b)
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Table 1. Characteristics of transverse vibrations in a bar with free ends.

Frequency Wavelength Nodal positions
(Hz) (m) (m from end of 1-m bar)
f,=3.5607 (K/L*E/p 1.330L 0.224,0.776
2.756 f, 0.800L 0.132, 0.500, 0.868
5.404 f, 0.572L 0.094, 0.356, 0.644, 0.906
8.933 £, 0.445L 0.073, 0.277, 0.500, 0.723, 0.927

where v is the phase velocity in (5). Solution of this tran-
scendental equation gives a set of frequencies

fr=ZE [Eanyry =20 E gy,
sL°\/ p L 0

n=123., (8)

where 4 is the thickness of the bar [ greater precision results
from using (3.011) in place of (3.0) when n=1]. The
frequencies and nodal positions for the first four bending
modes of a bar with free ends are given in Table 1.

D. Waves in a thin plate

Like a bar, a plate can transmit compressional waves,
shear waves, torsional waves, or bending waves; and it can
have three different boundary conditions: free, clamped, or
simply supported (hinged). ‘

A plate might be expected to transmit longitudinal
(compressional) waves at the same velocity as a bar:

¢, =+ E/p. This is not quite the case, however, since the
slight lateral expansion that accompanies a longitudinal
compression is constrained in the plane of the plate, thus
adding a little additional stiffness. The correct expression
for the velocity of longitudinal waves in an infinite plate is

¢, =VE/p(1—v7), (9

where v is Poisson’s ratio (v=~0.3 for most materials).

Actually, pure longitudinal waves occur only in solids
whose dimensions in all directions are greater than a wave-
length. Such waves travel at a speed ¢ that is slightly less
than the quasi-longitudinal waves that propagate in a bar
or a plate.

¢ =V(EN —=v)/p(1+v)(1=2v). (10)

Transverse waves in a solid involve mainly shear defor-
mations, although both shear stresses and normal stresses
may be involved. Solids not only resist changes in volume
(as do fluids), but they resist changes in shape as well.
Plane transverse waves occur in bodies that are large com-
pared to the wavelength in all three dimensions, but also in
flat plates of uniform thickness.® Transverse waves propa-
gate at the same speed as torsional waves in a circular rod:

¢y = VG /p. The shear modulus G is considerably smaller
than Young’s modulus E, so transverse and torsional
waves propagate at roughly 60% of the speed of longitudi-
nal waves. The radiation of sound in both cases is rather
insignificant compared to the case of bending waves that
we now discuss.

The equation of motion for bending or flexural waves in
a plate is
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2 2
9z, Eh”  ge,_y, (11)
at?  12p(1 —?)

where p is density, v is Poisson’s ratio, £ is Young’s modu-
lus, and 4 is the plate thickness. For harmonic solutions

z=Z(x,) €

v4Z — [12p(l — V)W Eh?)|Z=V*Z—-k*Z=0, (12)
where k 2 = (V12w/h)p(1 —v*)/E =12w/c,h. Bend-

ing waves in a plate are also dispersive; that is, their velocity
v depends upon the frequency

v(f) = w/k = (whc, /N12)"? = \[1.8fhc, . (13)
The dispersion relation is the same as that of a thin bar or

rod: @ = ¢; Kk? = ¢, hJ12k . The values of k that corre-
spond to the normal modes of vibration depend, of course,
on the boundary conditions.

E. Circular plates

For a circular plate, V is expressed in polar coordinates,
and Z(r,¢) can be a solution of either (V?> + k2)Z=0o0r
(V2 — k%) Z = 0. Solutions of the first equation contain the
ordinary Bessel functions J,, (kr), solutions to the second
the hyperbolic Bessel functions I,, (kr) =j—"J  (jkr).
Thus the possible solutions are given by a linear combina-
tion of these Bessel functions times an angular function:

Z(r,$) = cos(me + a)[AJ,, (kr) + Bl (kr)]. (14)

In comparing Egs. (4) and (14), it may be noted that the
hyperbolic Bessel functions are to the hyperbolic sines and
cosines as the ordinary Bessel functions are to the ordinary
sines and cosines.

If the plate is clamped at its edge r = @, then Z = 0 and
dZ /dr =0. The first of these conditions is satisfied if
AJ,(ka) +BI _(ka) =0, and the second if
AJ . (ka) + BI (ka) =0.

A plate with a free edge is more difficult to handle math-
ematically. The boundary conditions used by Kirchhoff
lead to a rather complicated expression for k,,,, which re-
duces to (2n + m)w/2r for large ka.® The modal frequen-
cies f,,,, are given in Table II for modes with m nodal diam-
eters and r nodal circles.

Chladni'® observed that the addition of one nodal circle
raised the frequency of a circular plate by about the same
amount as adding two nodal diameters, a relationship that
Rayleigh® calls Chladni’s law. For large values of ka,
ka=(m + 2n)w/2, so that fis proportional to (m + 2n)>.
The modal frequencies in a variety of circular plates can be
fitted to families of curves: f,,, = c(m + 2n)?. In flat
plates, p = 2, but in nonflat plates (cymbals, bells, etc.), p
is generally less than 2.'
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Table II. Vibration frequencies of a thin circular plate with free edge.

fio=02413¢c, h/a*
Jor = 1.73 f20 Jin=391%, Lo =671 1,
Jor =734 fy Si2= 1140 f3, S22 =15.97 f3

fzo = 2~328f2() Ji=4.11 oo f;() = 6~30f20
S = 10.07 15, S =13.92 £, S =1824 £,
Sf2=21.19f fi2=27.18 f3 f52=33.31%,

F. Rectangular plates

Since each edge of a rectangular plate can have any of the
three boundary conditions described by Eq. (6) (free,
clamped, or simply supported ), there are 27 different com-
binations of boundary conditions, and each leads to a dif-
ferent set of vibrational modes. Our discussion will be lim-
ited to three cases in which the same boundary conditions
apply to all four edges.

1, Simply supported edges

The equation of motion is easily solved by writing the
solutions as a product of three functions of single variables
x, y, and ¢. the displacement amplitude is given by

Z(x,y) =Asin[(m+ 1)zx/L, |sin[(n + V)7y/L,],
(15)
where L, and L, are the plate dimensions, and m and » are
integers (beginning with zero). The corresponding vibra-
tion frequencies are

Fon =0.453¢, h [(

2
+(n+1) +2(m+1)(n+1)]. (16)
L, L.L,
The displacement is similar to that of a rectangular mem-
brane, but the modal frequencies are not. Note that the
nodal lines predicted by (15) are parallel to the edges; this
is not the case for plates with free or clamped edges, as we
shall see.

It is convenient to describe a mode in a rectangular plate
by (m,n) where m and # are the numbers of nodal lines in
the y and x directions, respectively (not counting nodes at
the edges). The fundamental mode is designated (0,0).

m-}—l)2

X

2, Free edges

-Calculating the modes of a rectangular plate with free
edges was described by Rayleigh as a problem ‘“of great
difficulty.” However, Rayleigh’s own methods lead to ap-

= g 000

proximate solutions that are close to measured values, and
refinements by Ritz bring them even closer. Results of
many subsequent investigations are summarized by
Leissa. '

The limiting shapes of a rectangle are the square plate
and the thin bar. The modes of a thin bar with free ends
have the frequencies given by (8). The nth mode has n
nodal lines perpendicular to the axis of the bar. As the bar
takes on appreciable width, bending along one axis causes
bending in a perpendicular direction. This comes about be-
cause the upper part of the bar above the neutral axis be-
comes longer (and thus narrower), while the lower part
becomes shorter (and thus wider). Poisson’s ratio v is a
measure of the lateral contraction that accompanies a lon-
gitudinal expansion in a plate, and the factor 1 —v* ap-
pears in the expressions for both longitudinal and bending
wave velocities [ (9) and (13)].

Several bending modes in a rectangular plate can be de-
rived from the bending modes of a bar. The (m,0) modes
might be expected to have nodal lines parallel to one pair of
sides, and the (0,n) modes would have nodes parallel to the
other pair of sides. Due to the coupling between bending
motions in the two directions, however, the modes are not
pure bar or beam modes. The nodal lines become curved,
and the plate takes on a sort of saddle shape (i.e., concave
in one direction but convex in the perpendicular direction),
which can be called anticlastic bending.

It is interesting to note how the combinations develop in
arectangle as L, /L, approaches unity. Figure 2 shows the
shapes of two modes that are descendents of the (2,0) and
(0,2) bar modes in rectangles of varying L,/L,. When
L, =4L, the (2,0) and (0,2) modes appear quite inde-
pendent. However, as L, — L, the beam modes mix to-
gether to form two new modes. In the square, the mixing is
complete, and two combinations are possible depending
upon whether the component modes are in phase or out of

hase.
P The first ten modes of a square plate with free edges are
shown in Fig. 3. The mode of lowest frequency, the (1,1)
mode, is a torsional mode in which opposite corners move

(210)-‘(072)

Ly/Ly 4 2 3/2 12/11

(0,2)

Fig. 2. Mixing of the (2,0) and (0,2) modes in
21/20 1 rectangular plates with different L, /L, ratios

(after Ref. 18).
_(2,0)+(0,2)

O
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(1,1 (2,0-(0,2)  (2,0)+(9,2) (2,1) (1,2)
1.00 1.52 1.94 2.71 2.71
(2v2) (370) (073) (371)_(1s3) (3’1)'1"(1!3)

N
N | ]
4.81 5.10 5.10 5.30 6.00

Fig. 3. The first ten modes of an isotropic square plate with free edges. The
modes are designated by m and n, the numbers of nodal lines in the two
directions, and the relative frequencies for a plate with v = 0.3 are given
below the figure.

in phase Its frequency is given by

fu= 2L LZ\/2,;(1+v) L2 \/
17

Note that the (2,0 + 0,2) mode (“ring mode”) has a high-
er frequency than the (2,0 — 0,2) mode (“X mode”). In

the X mode, the bending motions characteristic of the (2,0)
and (0,2) beam modes aid each other through an elastic
interaction that we call Poisson coupling, since its strength
depends upon the value of Poisson’s ratio.”’ In the
(2,0 + 0,2) ring mode, however, there is an added stiffness
due to the fact that the (2,0) and (0,2) bending motions
oppose each other. Thus the Poisson coupling splits a mod-
al degeneracy that otherwise would have existed in a square
plate. The ratio of the (2,0 + 0,2) and (2,0 — 0,2) mode
frequencies is'*

fo/f- =1+ 0.7205v)7(1 — 0.7205v). (18)

Note that the (2,1) and (1,2) modes form a degenerate
pair, as do the (3,0) and (0,3) modes. However, Poisson
coupling removes the degeneracy in the case of the
(3,1) + (1,3) pair just as it does in the (2,0) + (0,2) case.
The general rule is that a nondegenerate pair of modes
(m,n+nm) exists in a square plate when
m—n= +24,6,...

The modal frequencies in an aluminum plate with vary-
ing length-to-width ratio are shown in Fig. 4. In this case
L, was kept constant as L, was varied, so the frequency of
the (3,0) mode, for example, is unchanged. The (1,1)
mode has a slope of 1. The (0,3) bending mode has a slope

1000

500

FREQUENCY (Hz)
T

200

100

— Fig. 4. Modal frequencies of an aluminum
plate with varying length-to-width ratio
L,/L, (Ref. 13).

0.4

Le/Ly
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(0,0) (1,0) (0,1) (1,1)  (2,0)-(0,2) (2,0)+(0,2)  (2,1) (1,2)
1.00 2.04 2.04 3.01 3.06 3.67 4.58 4.58

Fig. 5. Nodal patterns for the first eight modes of a square plate with clamped edges.Relative frequencies are given below the patterns.

of 2, as does the (0,2) mode above and below the region of
L, = L,. The (2,1) mode, which combines twisting and
bending motions, has a slope of about 4.

3. Clamped edges

The first eight modes of a square plate with clamped
edges are shown in Fig. 5. There is considerable variation in
the mode designation by various authors, and so we have
used the same designation that was used in Sec. II F 1 fora
plate with simply supported edges: m and n are the
numbers of nodes in the directions of the y and x axes,
respectively, not counting the nodes at the edges. The fun-
damental (0,0) mode has a frequency: f,, = 1.654
c h/L? where h is the thickness, L is the length, and

¢, = \/Ep‘ '(1 —+*) ~ ! is the longitudinal wave veloc-
ity.'? The relative frequencies of the modes are given below
the patterns in Fig. 5.

Comparing the modes of the square plate with clamped
edges to one with free edges, we note that

(1) The (1,1) mode has a frequency nearly 10 times
greater than (1,1) mode in a free plate.

(2) Three other modes exist below the (1,1) mode in the
clamped plate.

(3) The X mode and ring mode are only about 0.5%
different in frequency, and the diameter of the ring mode is
smaller than it is in a free plate.

(4) Nondegenerate mode pairs (m,n + n,m) exist when
m—n= +2,4,6, ..., as in the free plates, but the transi-
tion from modes characteristic of rectangular plates to
those of square plates changes much more abruptly as
L, - L, in clamped plates than in free plates.'

Relative frequencies of rectangular plates with clamped
edges are given in Table I11. The actual frequencies can be
obtained by multiplying the relative frequencies by
1.654c, h /L.

III. EXPERIMENT 1: WAVES IN A BAR

We want to observe three types of standing waves in an
aluminum bar: (1) longitudinal compressional waves; (2)

Table III. Relative vibrational frequencies of rectangular plates with
clamped edges. '’

Mode L./L,=1 1.5 2 2.5 3 00

0,0) 1.00 0.75 0.68 0.66 0.64 0.62
0,1) 2.04 1.88 1.82 1.79 1.78 1.72
(LO) 2.04 1.16 0.88
(L) 3.01 2.27 2.02 1.91 1.86 1.72

1158 Am. J. Phys., Vol. 58, No. 12, December 1990

transverse bending waves; (3) torsional waves. Bending
waves are dispersive, whereas compressional and torsional
waves are not. In all three cases, we employ a bar of rectan-
gular cross section with free ends.

To excite a single mode of vibration or standing wave
pattern in a bar we can apply a sinusoidal driving force at
the appropriate frequency or we can apply an impact while
the bar is restrained at the nodal positions for the desired
mode. For demonstrating modes of vibration in a lecture,
impact excitation (e.g., striking the bar with a hammer or
even banging the end on the floor) is most dramatic; for
identifying a large number of modes, however, sinusoidal
excitation is preferred. More sophisticated methods for
modal analysis, such as holographic interferometry and the
use of force hammers and accelerometers, will not be dis-
cussed in this paper. Rather, we describe a very simple but
versatile experimental arrangement.

A. Experimental method

The simple arrangement recommended for this experi-
ment is shown in Fig. 6. The bar is supported by two rubber
bands, and a small cylindrical magnet is attached. A coil of
about 300400 turns, driven by an audio amplifier, supplies
an alternating magnetic field. In order to determine the
modal shapes (i.e., the motion of the bar as a function of
position), a small electret microphone (e.g., Radio Shack
33-1052 tie clip microphone, about $12) is used to scan the
sound field near the bar.'*

Although the output of the microphone (a few millivolts
for one of the stronger modes) can go directly to an oscillo-
scope, we find it convenient to amplify and filter it using an
octave-band filter set (equalizer) of the type sold in audio
equipment stores (from $50 and up). This is especially use-
ful if the experiment is to be done in a noisy room. If the
equalizer has no microphone input, we add a simple pream-
plifier with input and output jacks; if the equalizer has a
microphone input, only a preamplifier output jack is neces-
sary. Connecting the two channels of a typical stereo equal-
izer in series provides a nominal 24-dB gain at the octave-
band center frequency.'® Although octave-band filters
greatly improve the signal-to-noise ratio at the frequency of
interest, they introduce considerable phase distortion,
which can be reduced by increasing the gain of the filters
just above and below the principal octave-band filter (thus
increasing the bandwidth). Because of the phase distortion
problem, we switch out the filters when they are not needed
in the laboratory.

Nodal lines are most easily located by observing abrupt
changes in the phase of the sound field (by means of a
Lissajous pattern on the oscilloscope) as the microphone is
moved along the bar. In order to maintain a nearly constant
spacing as the microphone is moved, it is convenient to clip
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Fig. 6. Arrangement used for observing
standing waves in an aluminum bar.

AUDIO GENERATOR

the tie clasp holder (if the tie clip microphone is used) to a
pencil supported by a ring stand or a weight hanger (as
shown in Fig. 6).

To excite longitudinal waves, the driver magnet is at-
tached to the end of the bar. Transverse bending waves and
torsional waves can be excited by attaching the magnet
near one corner of the largest face of the bar. Waves charac-
terized by bending in the plane of the bar require that the
magnet be attached to an edge of the bar. Although inex-
pensive ceramic magnets ($11 per hundred, Edmund Sci-
entific) are adequate for exciting most modes of vibration,
neodymium—iron-boron “super” magnets ($2.55 each,
General Science Materials) are advantageous for the high-
er frequencies. We employ driving coils matched to the 50-
Q output of an audio generator or to the lower impedance
of an audio amplifier (the 16-Q output, if the amplifier has
one). (In designing the drive coils, one shouldn’t forget the
inductive reactance of the coil as well as its resistance). A
typical magnet—coil driver of this type should provide a
force amplitude of 0.1-0.5 N up to 5000 Hz.

B. Experimental results

Modal frequencies for 39 modes of an aluminum bar
with dimensions 35.6x3.8X0.95 cm, covering the fre-
quency range 440-37 800 Hz, are shown in Fig. 7 and in
Table IV. Fitted to the data in Fig. 7 are straight lines hav-
ing slopes (log f, /log n) of 1 (longitudinal and torsional
modes) or 2 (bending modes). Obviously, the modes of
high frequency are quite difficult to identify. In a 2-hour
laboratory, however, it is quite reasonable to map the mod-
al shapes of 5 to 7 bending and torsional modes up to 5700
Hz plus a couple of longitudinal modes at higher frequen-
cy. ‘
In the bar in Fig. 7, the first torsional mode has a fre-
quency close to that of the third bending mode (1956 vs
2115 Hz). The resonances are sharp, however, so there is
little difficulty in identifying the two separate modes. (Tor-
sional modes have a longitudinal nodal line at the center of
the bar.) At a frequency midway between two modal fre-
quencies, it is sometimes possible to observe motion which
combines these two normal modes.

Table IV includes the modal frequencies and also the
corresponding wave speeds calculated from these frequen-
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cies. The bending wave speeds are nearly proportional to
Jf , as predicted by thin bar theory, although speeds for the
higher modes fall slightly below this prediction, in keeping
with thick bar theory which includes the effects of shear
and rotary inertia. The longitudinal wave speed is nearly
constant, but at the higher frequencies it decreases slightly
below the value VE /p due to lateral inertia. The torsional
wave velocity, on the other hand, increases slightly with
frequency for reasons that are not well understood by the
authors.
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Fig. 7. Modal frequencies for an aluminum bar with dimensions
35.6 3.8X0.95 cm as a function of mode number n or 2 + 1.
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Table IV. Mode frequencies and corresponding wave velocities in an aluminum bar 35.6 % 3.8 X0.95 cm.

Transverse bending In-plane bending Torsional Longitudinal

n f.(Hz) v(m/s) /. (Hz) v(m/s) f,(Hz) cr(m/s) [ (Hz) ¢, (m/s)
1 384 187 1526 736 1956 1393 7230 5147
2 1084 310 3941 1085 3932 1399 14 434 5139
3 2115 433 7162 1463 5958 1414 21582 5122
4 3471 555 10 885 1804 8060 1435 28 627 5096
5 5148 676 14 842 2106 10230 1457 35500 5055
6 7114 795 19 055 2387 12 507 1484 42077 4993
7 9345 911 23278 2638 14 883 1514
8 11 851 1026 27 565 2871 17 402 1549

9 14 578 1137 20 050 1586

10 17 527 1247 22 810 1624

11 20 600 1352 25695 1663

12 23963 1447 28 677 1702

13 31816 1743

Figure 8 similarly shows the modal frequencies of a
rosewood xylophone bar (tuned to F ). Xylophone bars
have an arch cut into the lower side to reduce the frequency
of the first bending mode more than that of the second one,
in order to bring them into the harmonic ratio 1:3. Under-
cutting the bar in this manner lowers the torsional mode
frequencies considerably, but has little effect on the longi-
tudinal modes. (Marimba bars and vibraphone bars have
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Fig. 8. Modal frequencies of a xylophone bar turned to F ¥ (370 Hz).
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even deeper arches, so that the first and second bending
modes have frequencies in the ratio 1:4.)"7

IV. EXPERIMENT 2. STANDING WAVES IN A
CIRCULAR PLATE

A. Experimental method

The apparatus for exciting bending modes in a thin cir-
cular aluminum plate is similar to that previously de-
scribed for a bar. The plate is suspended by three rubber
bands or elastic cords. The strong modes at the lower fre-
quencies can (and should) be observed by sprinkling salt
or fine powder on the surface to create Chladni pat-
terns,'>!"!® but the higher modes are observed better with
the microphone scan technique described in Sec. III A.

B. Results

Frequencies of 31 bending modes in an aluminum plate
31 cmin diameter and 0.163 cm thick are shown as a func-
tion of the number m of nodal diameters in Fig. 9. The
family of modes without nodal circles (n = 0) lies along a
straight line having a slope p, = 1.93. In Fig. 9(b), the
same data are plotted as a function of m + 3n (modified
Chladni’s law). Now all the modes can be fitted reasonably
well to a line having a slope p = 2.

In an earlier paper,'' we showed that the mode frequen-
cies of flat circular plates can be fitted to two modified
forms of Chladni’s law: f,, =c(m+3n)? or f,, =

=c,(m+ 21)?". In the first case, the 27 in Chladni’s law

has been replaced by 3#; in the second case, constants ¢,
and p, are selected for a best fit with data for each value of
n. Subsequent experiments have shown that modal fre-
quencies in a wide variety of plates, bells, gongs, and cym-
bals can be fitted to such modified forms of Chladni’s law
reasonably well.!**!

V. EXPERIMENT 3. STANDING WAVES IN
SQUARE PLATES

A. Experimental method

For this experiment, we use two aluminum plates, 30.5
cm (12 in.) square and 1.59 mm (4 in.) thick. One plate,
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Fig. 9. Modal frequencies f,,,, of an aluminum plate 31 cm in diameter and 0.163 cm thick. (a) As a function of m with 1 as a parameter; (b) as a function
of m 4 3n (modified Chladni’s law) with p = 2 line shown.

with free edges, is suspended by rubber bands, as in Sec. B, Results
IV A. The other plate, slightly larger, is clamped in an alu-

minum frame so that the free portion is the same size as the Mddal shapes and frequencies for six modes observed in
free plate. In other respects, the experimental method was  each plate are shown in Fig. 10. The modal shapes and
the same as that used for the circular plate. frequency ratios compare reasonably well with those in
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Fig. 10. Mode shape and modal frequencies in a square aluminum plate: (a) free edges; (b) clamped edges.
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Fig. 3 (free edges) and Fig. 5 (clamped edges). The fourth
mode in the free plate (at 146 Hz) is a combination of the
degenerate (3,0) and (0,3) modes in Fig. 10, but the ampli-
tude of the (0,3) mode appears to be much greater than
that of the (3,0) mode. (The amplitude ratio depends upon
where the force is applied.) The frequency ratio of the ring
mode and X mode in Fig. 3(a) (1.20) is slightly less than
that calculated from Eq. (18) (1.27 for v = 0.33).

The modal shapes and frequencies for the clamped plate
in Fig. 10(b) are in reasonably good agreement with those
in Fig. 6, although all the frequencies are less than the theo-
retical values, probably because the clamping frame has
insufficient mass to clamp the edges firmly. The ring node
in the fourth mode has a smaller diameter than in the corre-
sponding free-plate mode in Fig. 10(a).

VI. RECTANGULAR PLATES

Experiments using rectangular plates of aluminum and
spruce are described in Ref. 13. In a quarter-cut spruce
plate, Young’s modulus is about 16 times greater along the
grain than across the grain. Thus bending waves travel four
times as fast along the grain, and the degeneracy that leads
to the appearance of the X mode and ring mode occurs for
L, =2L,. (In a skew-cut plate, the anisotropy is even
greater, and the degeneracy occurs at about L, = 3L,)."
Spruce is widely used as a soundboard material in musical
instruments such as pianos, guitars, and violins.

VII. CONCLUSION

Different types of waves can propagate in solids. Some
types are dispersive, some are not. Studying standing waves
in bars and plates with simple equipment in the laboratory
can contribute substantially to understanding wave behav-
ior of all kinds, a unifying theme throughout physics.
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(1) Heat is work, and work is heat.

notter.

Hat, Angel Records.

THE MUSICAL VERSION OF THE LAWS OF THERMODYNAMICS

(2) Heat won’t flow from the colder to the hotter; you can try it if you like, but you’d far better

Michael Flanders and Donald Swann, “The First and Second Laws of Thermodynamics,” from At the Drop of Another
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