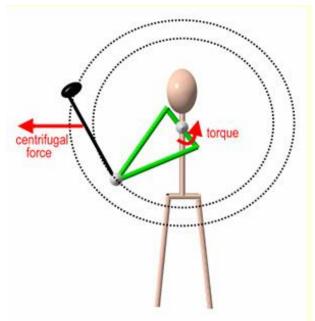


Bat Speed – Part 1

Adam Swayze January 14th, 2008

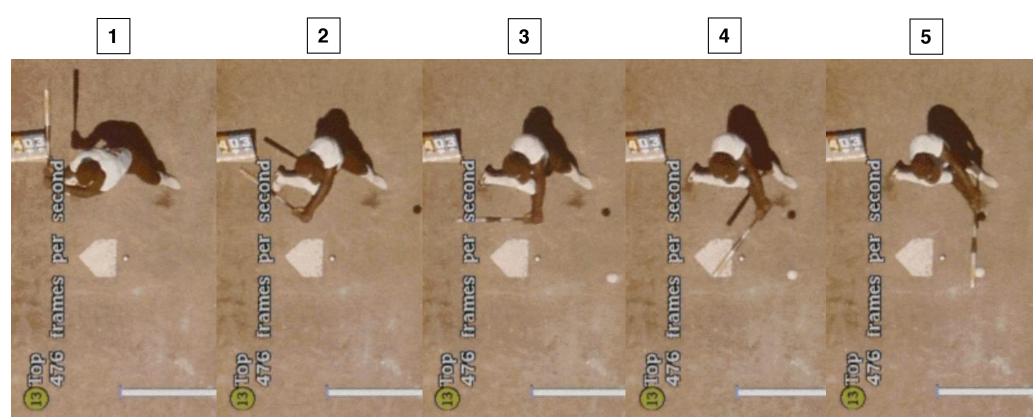
ŊΑ


Background

- Objective of hitting is to hit the ball hard this increases the chance of getting on base
- Velocity of batted ball is determined by
 - □ Speed of pitch
 - □ Weight of the ball
 - 'Rebound' of ball off bat
 - □ Weight of the bat
 - □ Speed of bat when it hits the ball
- For any swing at a given pitch, both the weight and rebound of the ball, and the weight of the bat are the same
- Therefore, the speed of the batter's swing will determine how hard he will hit the ball

Pendulum Models of Baseball Swings

The best way to get fast bat speed is to rotate the bat quickly around your body, using your hips to turn your shoulders


- This motion is like a pendulum
- Single pendulum model
 - □ Arms and wrist stiff
- Double pendulum model
 - ☐ Arms straight, wrists can bend
- Triple pendulum model
 - Arms and wrists bend

A Double Pendulum Model (for a Golf Swing)

Green = Arms; Black = Bat

A Double Pendulum Batting Swing (Top View)

Direction of Pitch

Ŋ.

Question and Hypothesis

- Question
 - What type of swing (single, double, or triple pendulum type) will produce the highest bat speed?
- Hypothesis
 - ☐ A triple pendulum will produce the highest bat speed.
- Secondary question
 - Will different bats result in different bat speeds with the same type of swing
- Secondary hypothesis
 - Lighter bats will produce higher bat speeds with the same swing type

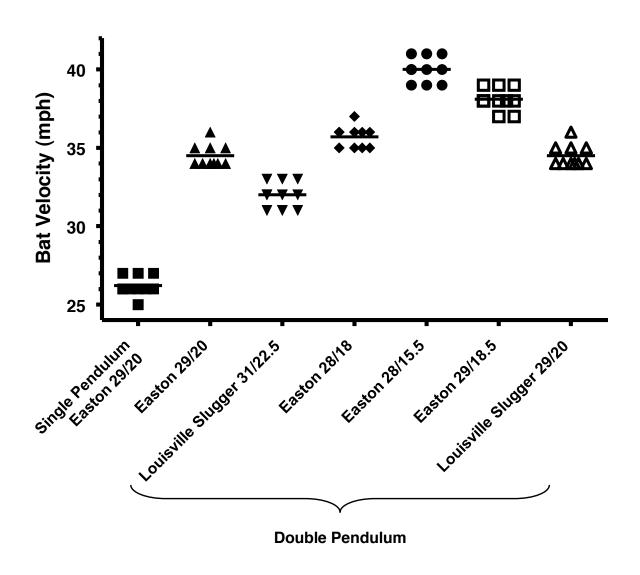
Procedures

- Build test apparatus
 - Connect aluminum pieces to model arm, forearm, and wrists with bolts for 'joints' (oiled to minimize friction). Make size of arms like a typical 11 year old batter. Use a real baseball bat attached to aluminum clamp at 'wrists'.
 - Use bolts and/or clamps to lock arms in place to simulate single and double pendulum swings.
 - Use a bungee cord affixed to arms and wrapped around 'shoulder' pivot bolt to initiate motion downward.
 - Position a swing speed radar to measure maximum bat speed.
- Test bat swings with single, double, and triple pendulum swings
 - Adjust start position of bat and arms to realistic position.
 - Adjust bungee cord to give consistent acceleration to each swing.
 - Measure speed for 10 trials using radar and record data.
- Try different bats using optimal swing type to see how this might change bat speed.
- Video tape one trial to show what happened, and capture individual frames for analysis.
- Analyze and graph results in MS excel.

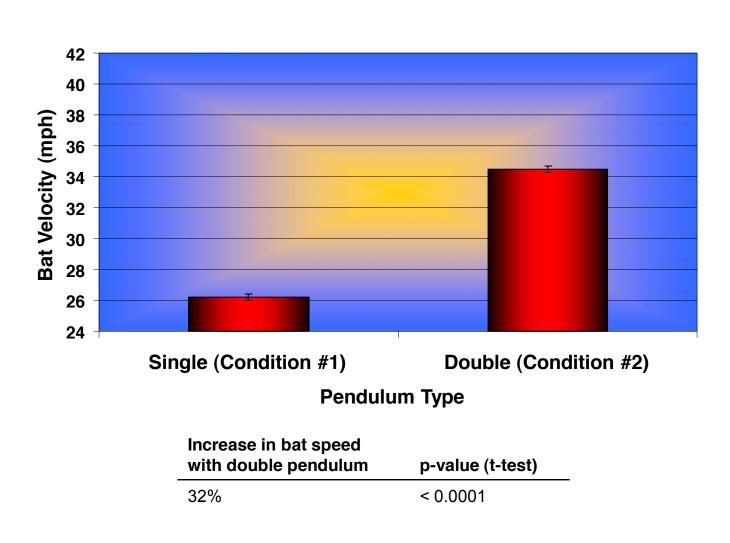
Bat speed Apparatus Setup

Relaxed position

Loaded position



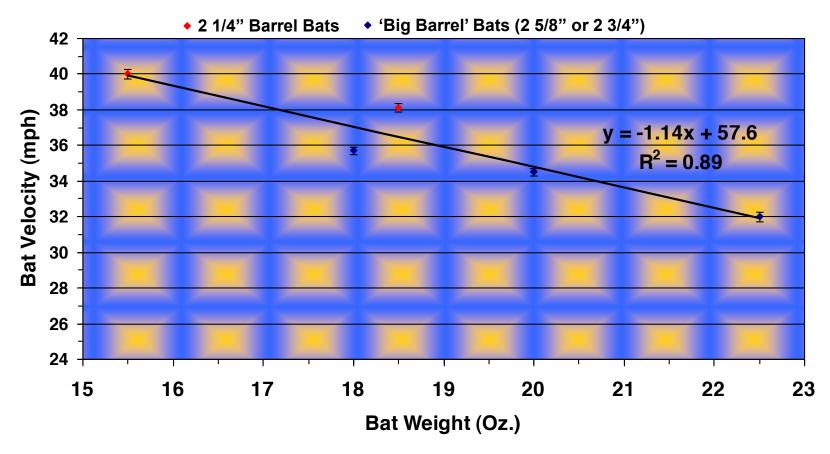
Conditions Measured


		Bat			
Condition	Pendulum Type	Length (in.)	Weight (oz.)	Barrel (in.)	Description
2	Double	29	20	2 3/4	Easton 29/20
3	Double	31	22.5	2 3/4	Louisville Slugger 31/22.5
4	Double	28	18	2 5/8	Easton 28/18
5	Double	28	15.5	2 1/4	Easton 28/15.5
6	Double	29	18.5	2 1/4	Easton 29/18.5
7	Double	29	20	2 3/4	Louisville Slugger 29/20

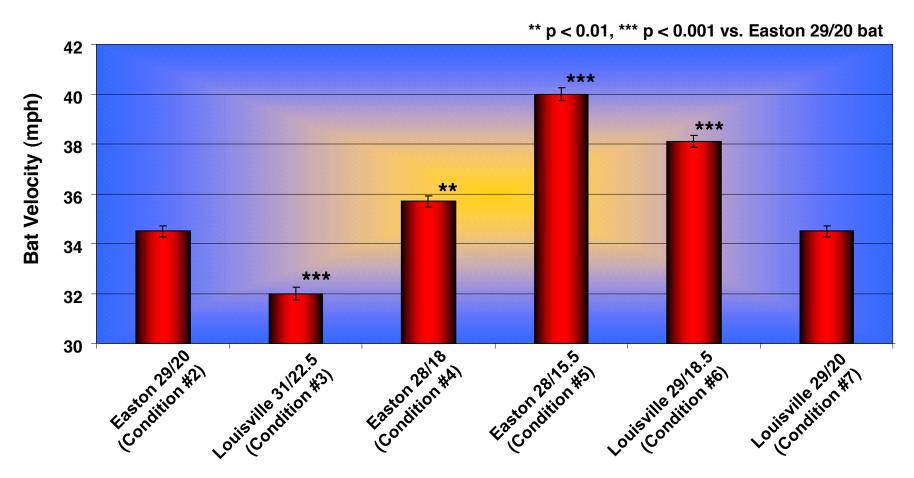
- 10 trials were conducted with each condition, and bat speed recorded
- Note: The triple pendulum design failed. I observed a 'bounce' of the bat back onto arms which is not like a real swing. This was probably because there was no force applied to the wrists (like a real batter would use).

Scatter Plot of All Data

A Double Pendulum Swing is Faster Than a Single Pendulum Swing


Bat Length Does Not Effect Bat Speed

Correlation of Bat Length with Bat Velocity


Lighter Bats Produce Faster Swings

Correlation of Bat Weight with Bat Velocity

- Single exception is 28/18 'big barrel' was slower than 29/18.5 normal barrel
 - Increased air resistance?
 - Different distribution of weight ?
- Further research required to identify if this is real, and if so, why.

Lighter Bats Produce Faster Swings

- Single exception is 28/18 'big barrel' was slower than 29/18.5 normal barrel
 - □ Increased air resistance?
 - Different distribution of weight ?
 - □ Further research required to identify if this is real, and if so, why.

Conclusions – Part 1

- Baseball swings can be modeled with pendulums.
- A double pendulum swing produces higher bat speed than a single pendulum.
- Lighter bats tend to produce higher bat speeds than heavier ones.
- Big barrel bats might produce lower speeds than regular barrel bats, however more data is needed to show this