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ABSTRACT:  In the high-speed collision between a baseball and bat, most of the initial 
center-of-mass kinetic energy is converted into compressional energy in the ball, and 
about 75% of that energy is dissipated.   Some of the energy is stored in vibrational 
modes of the bat, particularly in the so-called “hoop modes”, the most important of 
which is a radial deformation with a quadrupole azimuthal dependence.  The lowest 
such mode has a frequency in the 1-3 kHz range and is strongly excited during the 
collision by the local compression of the shell of the bat at the point of impact.  Some of 
the collision energy that would otherwise have been stored and mostly dissipated in the 
ball is stored in this mode.   Interestingly and for reasons examined in this paper, much 
of this stored energy is returned to the ball, resulting in less overall energy dissipated 
and a correspondingly larger ball exit speed.  This is popularly called the "trampoline 
effect", and the goal of this paper is to examine the physics behind the effect.  A simple 
picture of the trampoline effect is presented and the consequences of this picture are 
interpreted in physical terms.  Results of a more realistic model are given, along with 
comparisons with data.  Finally a discussion of whether “corking” a wood bat produces 
a trampoline effect is presented. 
 
 
INTRODUCTION  
 
The collision between a baseball or softball and a bat is violent, with peak forces in the 
thousands of pounds required  to reverse the direction of the ball in a time of order 1 ms.  
During the collision, the ball compresses to a fraction of its undistorted radius, comes to 
a momentary halt, reverses direction and then expands to its original shape.  This 
process is inherently inefficient, with a large fraction of the original kinetic energy 
dissipated in the internal structure of the ball.  This inefficiency is characterized by the 
“coefficient of restitution”  (COR or e).  For a two-body collision, the COR is defined 
as the ratio of the relative velocity after the collision to that before the collision.  It is 
straightforward to show that the fraction of the original energy in the center of mass 



(CM) frame that is dissipated in the collision is 1-e2.  For a perfectly elastic collision,  
no energy is dissipated,  the two bodies recede with the initial relative velocity, and e=1.  
For a perfectly inelastic collision, the two bodies stick together, all the initial CM 
energy is dissipated, and e=0. 
 The COR is actually a joint property of the two colliding bodies.  Nevertheless, it is 
common to refer to the “COR of the ball”, denoted herein by the symbol e0, which is the 
COR when the ball collides with a massive rigid wall.   In such a collision, all of the 
energy losses come from dissipation in the ball.  For a baseball or softball at speeds 
typical of the game, e0  is about 0.5, so that 75% of the initial energy stored in the ball is 
dissipated.  For the collision of a baseball with a bat,  e is generally different from e0 due 
to the flexibility of the bat.  As a result the ball and the bat mutually compress each 
other during the collision, so that some of the CM energy that might otherwise have 
gone into compressing the ball instead goes into compressing the bat.  Therefore less 
energy gets stored and dissipated in the ball.  Whether the COR increases or decreases 
relative to e0 depends on how effectively the compressional energy stored in the bat is 
returned to the ball.  For solid wood bats, the energy stored in the bat is not effectively 
returned to the ball but instead appears as low-frequency bending vibrations.  Therefore, 
e never exceeds e0, and for collisions far from the nodes of the lowest few vibrations, e 
is considerably less than e0 (Nathan, 2000).  For hollow bats, such as  the commonly 
used aluminum bat, energy is also stored in the so-called hoop modes, which 
correspond to a compression of the thin shell.  For reasons that will be examined in this 
paper, the energy stored in the hoop modes is efficiently returned to the ball, resulting in 
a COR which is larger than e0.  This phenomenon is commonly referred to as the 
trampoline effect.   The question as to why the hoop modes are effective and the 
bending modes are not effective at returning stored energy to the ball is one that will be 
addressed in this paper.  

 
A SIMPLE PHYSICAL PICTURE   
 
The ball-bat collision is a complicated problem 
that is neither easy to solve from first principles 
nor particularly illuminating to do so . 
Therefore a toy model is proposed which, 
while highly simplified, captures the essential 
physics of the trampoline effect.  The model, 
shown schematically in Fig. 1, is similar to that 
considered earlier for tennis (Cross, 2000) or 
baseball (Naruo and Sato, 1997) and consists of 
representing the ball and bat as linear springs 
that can mutually compress each other.  The 
ball consists of a mass m attached to a damped sp
other end of the spring free.  The bat consists of
spring of force constant kbat, with the opposite sid
wall.  The collision consists of the free end of t
speed vo, colliding with the mass M, initially
numerically until the ball spring and bat mass sep
speed v.  The COR is the ratio v/ vo.   In this mode
Figure 1  Mass-spring model for 
the ball-bat collision.
ring of  force constant kball., with the 
 a mass M attached to an undamped 
e of the spring attached to a massive 
he ball spring, initially moving with 
 at rest.  The collision is tracked 
arate, whereupon the ball has a final 
l, the bat has only a single degree of 



freedom corresponding to the vibration of M on the bat spring.  All other degrees of 
freedom, such as the rigid body motion and other vibrational modes of the bat, are 
ignored; while they may be important to the understanding of how a real bat works, 
they are not essential to our understanding of the trampoline effect.    This model is 
nearly identical to that used earlier (Nathan, 2000) to characterize the bending 
vibrations of the bat, except that in the latter case there was no dissipation in the ball.    
 The three parameters describing the ball (m, kball, and damping constant) are chosen 
to reproduce the known mass (5.2 oz), ball-wall collision time (~0.6 ms), and e0  (0.5) 
for a baseball (Adair, 2002).  The dependence of the COR on the two bat parameters M 
and kbat is investigated.  Actually it is more physically meaningful to investigate the 
dependence on two related factors.  One of these is the ratio of spring constants 
rk=kbat/kball; the other is the product fτ, where 2 batf k Mπ =  is the natural vibrational 
frequency of the bat spring and τ  is the collision time, the latter determined primarily 
by the ball parameters.  For fτ >1, rk is roughly proportional to the ratio of initial energy 
stored in the compression of the ball to that stored in the compression of the bat;  
therefore it is expected to play a 
crucial role in the trampoline 
effect.  On the other hand, fτ 
determines the fraction of initial 
energy that is transferred to the 
vibrational mode of the bat, as 
will be seen by the explicit 
calculations described   below.  
The effective bat mass M is 
initially set to be four times the 
ball mass (20.8 oz), and the 
dependence of the COR on rk is 
investigated.  The results are 
summarized in Fig. 2, which 
shows both the COR and how the 
final energy is partitioned.  

/

  It is both interesting and 
instructive to discuss initially the 
two limiting cases (Nathan, 2000).   
For rk >>1 and fτ >1, the bat looks 
completely rigid and therefore 
infinitely massive during the 
collision, so that the ball bounces 
from it as it would bounce from 
any massive rigid object; i.e., with 
e=e0, with 25% of the initial 
energy going to the rebounding 
ball, with 75% of the initial 
energy dissipated in the ball, and with no energy transferred to the bat.  This regime is 
denoted as the “strong coupling” limit, because the mass M is effectively rigidly 
attached to the wall.  For rk <<1 and fτ <<1, the bat mass is completely decoupled from 
the spring on the short time scale of the collision.  In effect, the ball bounces from the 
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Figure 2.  COR and fτ (top) and energy 
fraction (bottom) as a function of rk for 
M=20.8 oz. 



mass so quickly compared with the vibrational period of the bat that the mass has no 
time to recoil during the collision, so the ball bounces from an essentially free object of 
mass M.  This interpretation is in complete accord with the numerical results for the 
COR as well as the partitioning of the initial energy into kinetic energy of the 
rebounding ball, energy dissipated in the ball, and energy transferred to the bat, the 
latter in the form of vibrations.  This regime is denoted as the “quasi-free” limit, 
because the bat mass is essentially free during the collision.   Note that for the particular 
mass chosen, the COR in the quasi-free limit is actually less than e0, a fact that makes 
sense physically:  a ball rebounds from a finite-mass object with less speed than from 
an infinite-mass object. 
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 Starting from the strong coupling limit, as rk is reduced with M fixed, more energy 
gets stored in the bat spring, less energy gets stored (and dissipated) in the ball spring, 
and the COR rises; for the rather large value of M chosen here, the rise is only modest 
and not typical of aluminum bats. The energy plots are consistent with this picture as 
they demonstrate that as rk is reduced, the kinetic energy fraction of the rebounding ball 
increases, and the fraction of energy dissipated in the ball decreases.  As long as the 
collision time is longer than ~1/f, no net energy is transferred to the bat.  The physical 
picture is that the ball adiabatically pushes on the bat spring, initially compressing it, 
then releasing it, on a time scale long compared with the vibrational period of the spring.  
Under such conditions, all of the compressional energy of the bat is returned to the ball 
and none remains in the bat.  With further reduction in rk, and a consequent reduction in 
fτ, a growing fraction of the energy stored in the bat remains in the bat after the collision.  
As a result, the COR curve does not continue to grow to unity, as it would in the 
absence of energy transferred to the bat.  Instead it reaches a peak, then subsequently 
starts to fall because the energy transferred to the bat grows rapidly as fτ <<1.  These 
features are in accord with the curves in Fig. 2.   Another way to look at the interplay 
between stored and transferred energy is shown in Fig. 3, which shows the time 
evolution of the ball and bat energies as well as the ball compressional energy for the 
fixed value rk=25 corresponding 
to fτ≅1.  In this example, about 
10% of the initial energy goes into 
compressing the bat and half of 
this is transferred to the bat.  The 
value of rk  at which the COR is 
maximized occurs when fτ≅1; 
therefore, for a smaller mass M, 
that value gets smaller and the 
peak value of the COR gets larger, 
as demonstrated in Fig. 4.  Note 
that a larger fraction of the stored 
energy remains in the bat after the 
collision for the larger mass, 
which has a smaller value of fτ.  
The ideal bat would have both 
rk<<1, so that very little energy is 
stored and dissipated in the ball, 
and fτ>>1, so that no energy is trans
Figure 3.  Energy fraction versus time for rk=10 
and M=20.8 oz.
ferred to the bat.  This could be achieved by a bat 



consisting of a thin, deformable, but 
nearly massless membrane, for 
which the COR is nearly unity 
independent of e0.  Indeed, a 
completely dead ball with e0=0 
would be indistinguishable from a 
superball with e0≅1 when bounced 
from such a membrane (Adair, 
2002).   
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 Some practical consequences 
follow from our simple picture: 
• While on the rising part of the 

COR-vs.-rk curve, the COR can 
be increased with either a softer 
bat (kbat smaller) or a harder ball 
(kball larger).  The effect of 
softball compression on bat 
performance is discussed at this 
conference (Duris and Smith, 2004). 

Figure 4.  COR vs .rk for M=5 (solid), 10 
(dotted), 15 (dashed), and 20 (dash-dotted) 
oz.  The anomalous behavior for M=10 
arises because of multiple collisions. 

• The ratio e/e0, often referred to as the Bat Performance Factor or BPF (Nathan, 
2003), is not independent of e0 but rather decreases with increasing e0..  Indeed the 
above example of the superball and dead ball is a dramatic, albeit extreme, 
demonstration of this point:  The BPF is 1 for the superball and infinite for the dead 
ball.  This conclusion is contrary to the commonly held belief that the BPF 
normalizes out the effect of the ball COR and so represents a bat property that is 
independent of e0.  Our conclusion is in accord with recent unpublished data taken 
at the Sports Science Laboratory (SSL) at Washington State University. 

• A baseball is almost surely a nonlinear spring (Adair, 2002), with the effective 
spring constant increasing and e0 decreasing with incident speed.  As a 
consequence,  the BPF grows with higher incident speed, in agreement with data 
taken at the SSL. 

• For rk >>1, the collision time depends only on the ball mass-spring system.  
However, as rk is reduced from this limit, the effective spring constant is reduced as 
the bat spring also compresses, resulting in a somewhat longer collision time.  
Therefore a weak correlation is expected between e and collision time, a feature 
that is exploited in the pendulum test that is used to characterize the performance 
of golf drivers (USGA, 2003). 

• For given ball parameters, the COR depends on both vibration parameters, M and 
kbat.  Because each parameter can be independently adjusted, the COR is not 
expected to be a unique function of the trampoline frequency alone.  This issue is 
addressed in a contribution to these proceedings (Russell, 2004). 

 
BEYOND THE SIMPLE PICTURE  
 
An improvement to the simple picture is sought, using as a starting point the model of 
the ball-bat collision that was previously developed to treat the bending modes of solid 
wood bats (Nathan, 2000).  For hollow bats, there are additional “hoop” modes due to 



the deformation of the thin shell.  
The lowest  hoop mode is a 
quadrupole-type deformation with 
4 nodes in the azimuthal direction 
and a frequency typically in the 
range 1000-3000 Hz (Russell, 
2004).  From thin-shell theory, the 
stiffness of a shell for such a 
deformation scales with (t/R)3, 
where t and R are the shell 
thickness and radius, respectively.  
Therefore, the mode is expected to 
have appreciable amplitude only in 
the fat part of the bat, in agreement 
with recent experiments (Russell, 
2004).  The previous model is 
modified by adding a single hoop 
mode, whose properties (mass, moda
experimental data rather than from a f
then used to study the collision betwe
modal and collision properties have be
plotted as a function of impact locatio
the SSL. The solid curve, representin
overall size and the spatial dependenc
would improve the agreement.  The d
third bending mode, which has a frequ
mode decreases the COR, suggesting t
The frequency of the mode is n
approximately 1 ms.  Lower frequen
higher frequency modes are too stiff
inspection shows that this mode has a
“sweet spot zone,” defined as the reg
observations suggest that improved 
redistributing the mass in order to mo
to the sweet spot zone 
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DOES A CORKED BAT HAVE A T
 
A corked bat is a wood bat in which a 
of the bat.  Typically the diameter of 
cavity is filled with a light inert mater
weight from the barrel region, the bat
bat control.  This increased swing sp
effective collision due to the lower ba
cavity gives rise to a trampoline effect
dependence of the hoop spring cons
unlikely.  For example, the thickness
Figure 5.  Calculated (curves) and measured 
(points) COR vs. impact location.
l shape, and spring constant) are derived from 
irst-principles calculation.  This revised model is 
en a softball and a particular softball bat, whose 
en studied experimentally.  The resulting COR is 
n in Fig. 5, along with experimental data taken at 
g the full calculation, faithfully accounts for the 
e of the COR, although a relative shift by ~1/2” 
ashed curve is a calculation that eliminates the 
ency of 1174 Hz.  Interestingly, eliminating this 
hat this mode contributes to the trampoline effect.   
early optimum, given the collision time of 
cy modes are net dissipaters of energy whereas 
 to contribute to the trampoline effect.  Closer 
n antinode 10” from the barrel end, close to the 
ion of the maximum of the COR curve. These 
performance of this bat might be obtained by 
ve the antinode of the third bending mode closer 

RAMPOLINE EFFECT? 

cylindrical cavity is drilled axially into the barrel 
the cavity is ~1” and the length ~l0”. Often the 
ial, such as cork—hence, corking.  By removing 
ter can achieve a higher swing speed and better 
eed is at least partially compensated by a less 
rrel weight.   Some batters claim that the empty 
, much like in hollow metal bats.  Given the steep 
tant on wall thickness, this claim seems highly 
 of a typical aluminum bat is only about 0.1” 
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whereas the wall thickness of a hollowed-out wood bat is perhaps 7 times larger.  In 
order to investigate this question experimentally, the SSL facility was used  to fire a 
baseball at 110 mph into the barrel of a bat that was initially at rest but free to pivot 
about the handle.  The incoming and outgoing speeds of the ball were measured which 
were used along with kinematic formulas (Nathan, 2003) to determine the COR.  A 
single baseball and standard wood bat 
were used.  Initially the unmodified bat 
was impacted.  Then a cavity was bored 
into the bat and the hollowed-out bat 
was impacted.  Finally, the cavity was 
filled with cork and the corked bat was 
impacted.  A “monitor bat” was used 
throughout the experiment to verify that 
the properties of the baseball had not 
changed as the result of repeated 
impacts.  The results, presented in Fig. 6, 
show no appreciable difference among 
the three bats.   It is concluded that there 
is no measurable trampoline effect 
from a hollowed or corked bat. 
 
SUMMARY 
 
The physics of the trampoline effect in ba
in the context of  simple models of the ball
agreement with a variety of qualitatitve ph
No experimental evidence is found for a t
bats. 
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