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Testing the Nonlinearity of Piano Hammers Using Residual Shock
Spectra

D. Russell� and T. Rossing
Physics Department, Northern Illinois University, DeKalb, IL 60115

Summary
Force pulses and residual shock spectra of voiced, unvoiced (soft), and used (hard) piano hammers are compared. The
peak frequency fmax of the residual shock spectrum is related to the frequency range over which the hammer will
be most effective in exciting string modes. Hammer speeds of 1 to 6 m/s, used in these experiments, span the normal
dynamic range of the piano. Peak force is related to pulse duration and also to a nonlinearity exponent in the equation
relating force to compression of the felt. For lower notes on the piano, fmax is well above the fundamental frequency
which helps to explain the dominance of higher partials in the bass notes. At the treble end, however, fmax is comparable
to the fundamental frequency, resulting in a strong fundamental and few partials in these notes on a piano. In addition
to its usefulness in piano research, the residual shock spectrum could serve as a useful guide in the production and
voicing of pianos.

PACS no. 43.75.Mn, 43.40.Jc, 43.40.Yq

1. Introduction

Although the hammers in the very first pianos consisted of
wooden heads covered with leather, felt hammers have been
standard since about 1830. Modern hammers consist of a
wooden molding covered with several layers of compressed
wool felt, whose hardness is carefully controlled. In order
to produce a good tone, the hardness has a gradient which
may be adjusted using various techniques in a process called
voicing.

The static hardness of a piano hammer has a great deal of
influence on the resulting piano sound. Hard hammers are
better at exciting high frequency modes of a piano string’s
vibration so that the resulting tone quality may be character-
ized as being bright, tinny, or harsh. Soft hammers, on the
other hand, do not excite high frequencies very well, and the
resulting tone is somewhat dull or dark. The static hardness
of a piano hammer may be tested by a durometer or hardness
tester [1]. In a typical piano, treble hammers are much harder
than bass hammers.

The dynamic hardness of a piano hammer also plays an
important role in the final piano sound. A piano hammer
behaves somewhat as a hardening spring; for large impact
forces the hammer felt appears harder than it does for low
impact forces. In the piano this means that a loud note sounds
much brighter (i.e. contains more high frequencies) than a
quiet note. It is difficult to test the dynamic hardness of
hammers except by listening to them in a finished piano. If
the piano tone is not as desired then the hammer hardness
must be adjusted by voicing. This paper presents a method
of testing the dynamic hardness of a piano hammer using the
residual shock spectrum.
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2. Static and dynamic measurements of hammer felt
hardness

Static measurements of applied force versus compression of
wool felt pads [2, 3] do not obey Hooke’s Law, but display a
nonlinear relationship as for a hardening spring. Also evident
in force-compression measurements of felt pads is a hystere-
sis effect, due largely to slippage of the wool fibers which
occurs during slow and large amplitude compression [4].
Since piano hammers are covered with layer(s) of wool felt,
it is not surprising that nonlinear force-compression curves
and hysteresis loops are also characteristic of piano hammers.

Static measurements by Hall and Askenfelt [5] of force-
compression curves for several piano hammers can be fit to
a power law:

F = K�p; (1)

where K has units of N=mp and is a generalized stiffness
of the hammer, and the exponent p describes how much the
stiffness changes with force. Hall and Askenfelt measured
values of p ranging from 2.2 to 3.5 for hammers taken from
pianos, and 1.5 to 2.8 for unused hammers. A greater value
of p means a greater range of hammer stiffness for a given
range of force.

Dynamic measurements of the force and felt compression,
observed during the impact between a piano hammer and a
rigidly fixed string, have been obtained by Suzuki [6, 7],
Boutillon [8], and Yanagisawa and Nakamura [9]. Data may
be fit rather well to Eq.(1), with typical values of p ranging
from 2.3 to 3.6 for voiced piano hammers. The measurements
of Boutillon and Yanagisawa and Nakamura clearly indicate
hysteresis loops, with the coefficient K and exponent p hav-
ing different values for compression and relaxation.

In addition to their static measurements, Hall and Asken-
felt [5, 10] also devised a dynamic method of measuring the
nonlinearity in the hammer compliance. Instead of measur-
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ing the hammer felt compression, they used an oscilloscope
to display the force-time pulse shape of the hammer as mea-
sured by the force transducer. The contact duration � for a
blow on a rigid surface is related to the maximum force by

� / (Fmax)
(1�p)=2p; (2)

where the exponent p is the same as in Eq.(1). Measurements
made for voiced hammers from several pianos show a smooth
increase from p ' 2 in the bass, to p ' 4 in the treble. A set
of four matched hammers whose hardness was adjusted in
various degrees from very hard to very soft, yielded p = 2:3
for the hardest hammer, p = 2:8 for the softest hammer, and
p = 3:3 for a hammer so soft it was effectively ruined.

While the measurements mentioned above provide infor-
mation about the dynamic hardness of hammer felt, they do
not directly provide information regarding how the dynamic
hardness of a hammer affects the string vibrations and ulti-
mately the piano sound. A dynamic method providing this
information is needed.

Bork [11] had measured the acoustical properties of per-
cussion mallets and applied a dynamic method, using the
residual shock spectrum, [12] to determine the range of fre-
quencies that a given mallet moat effectively excites for a
given range of impact velocities. He found that the peak value
of the residual shock spectrum indicates the frequency range
over which a mallet is most effective for a given blow, and
that this peak value varies with blow strength. The present
authors have applied this dynamic method to study the non-
linear behavior of piano hammers.

3. The residual shock spectrum

3.1. Shocks and shock spectra

A shock may be defined as the "transmission of kinetic en-
ergy to a system, the duration of the energy transfer being
short compared to the natural period of oscillation of the
system" [13]. A shock pulse is a time history described in
terms of force, acceleration, velocity, or displacement. The
usual goal of shock analysis is to estimate the effect of a
shock on a certain mechanical system. The shock spectrum,
or response spectrum, describes the response of the system
to the applied shock; the response may be given in terms of
acceleration, velocity, or displacement. The shock spectrum
may be measured by applying a shock to a series of linear,
undamped, single degree-of-freedom systems and plotting
the maximum response of each system versus its resonance
frequency. There are three basic forms of the shock spec-
trum: the initial shock spectrum is the maximum response
of the system while the shock is still acting; the residual

shock spectrum is the maximum response after the shock
has stopped; the maximax spectrum is the maximum re-
sponse over all time [13, 14].

If the shock pulse is of a type that can be expressed in
simple mathematical terms, then the shock spectrum may be
calculated [15]. The shape and duration of the shock pulse de-
termine the shape and frequency range of the shock spectrum.
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Figure 1. Residual shock spectrum calculated for a sine-squared
pulse of duration � .

Figure 1 shows the residual shock spectrum for a sine-squared
pulse of duration � . The frequency fmax corresponding to
the center of the main peak is the frequency at which a single
degree-of-freedom system would be most effectively excited
by this specific shock pulse. If the system to which the shock
is to be applied is a complex system, with many resonance
frequencies, a resonant mode with a frequency near fmax

will be maximally excited, whereas a mode with a frequency
much lower or higher than fmax will be only poorly excited.
With a prior knowledge of the resonance frequencies of a
system, the residual shock spectrum may be used to predict
how effectively each of those resonances will be excited by
an applied shock pulse.

The residual shock spectrum has a simple relationship to
the Fourier transform [13, 16]. The maximum acceleration
response to an acceleration shock is related to the Fourier
spectrum of the shock pulse by

Ra(!) = !jFa(j!)j ; (3)

where Ra(!) is the acceleration residual shock spectrum
and Fa(!) is the Fourier spectrum of the acceleration shock
pulse. If the shock is a force pulse then the acceleration
response depends on the mass M of the system to which it
is applied [11,12]

Ra(!) =
!

M
jF(j!)j ; (4)

where in this case F (!) is the Fourier spectrum of the force
pulse. If the mass of the system is constant then a measure-
ment of !jF (!)j may still be considered to be a measure
of the acceleration amplitude. Equation (3) allows the resid-
ual shock spectrum to be obtained for a shock pulse that
may be measured, but not expressed mathematically. If a pi-
ano hammer strikes a stationary force transducer, the Fourier
transform of the force pulse and the resulting acceleration
residual shock spectrum may both be obtained by means of
a fast-Fourier transform (FFT) analyzer.
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3.2. Application to piano hammers

In our application of shock theory the residual shock spec-
trum of a piano hammer as it strikes a rigidly mounted
force transducer provides information about how the dy-
namic hardness of a piano hammer affects the sound pro-
duced by a piano. The hammer is regarded as providing a
force shock to the string, which is treated as a complex sys-
tem with many resonance frequencies. However, in such an
application several things must be considered.

First of all, the interaction between the hammer and string
in a real piano is a very complicated one. This interaction
affects the shape of the shock pulse applied by the hammer;
reflections from the near end of the string can cause valleys
in the pulse shape [7, 8] so that it differs considerably from
the smooth sine-squared-like pulse shape obtained when the
hammer hits a rigid object. Also, there are often multiple
contacts between hammer and string before the hammer is
thrown sufficiently away from the string [17, 18, 19]. Sec-
ondly, the definition of a shock requires a duration shorter
than the natural period of the receiving system. For bass ham-
mers, the hammer-string contact time is only a fraction of the
period of the string fundamental, and in the middle register
it is about half the period [20, 21]. However, in the treble
register the hammer-string contact time is several periods.
Thirdly, the vibration of the hammer shank may also affect
the interaction between hammer and string [22, 23], since the
force of the hammer on the string is not constant when the
shank is vibrating.

These problems must be considered when interpreting the
residual shock spectrum of a piano hammer obtained as the
hammer strikes a rigid object and applying the results to the
hammer-string problem. If, however, it is assumed that the
force of a hammer hitting a string may be roughly approxi-
mated by the force of the hammer hitting a rigid object, and
attention is focused on the hammer itself, then our measured
residual shock spectrum provides a rough prediction of the
hammer’s ability to transfer its kinetic energy to the string.
The residual shock spectrum serves as a "fingerprint" for the
hammer giving an approximate frequency range over which
the hammer is most effective in exciting string modes. The
shock spectrum also shows how this frequency range changes
with hammer size, velocity, and felt stiffness.

Not only might such information increase our understand-
ing of the nonlinear behavior of the hammer, but the residual
shock spectrum of a piano hammer might also prove to be a
useful diagnostic tool in the piano industry. Preliminary voic-
ing of hammers could be done even before they are placed
in a piano. Measuring the residual shock spectrum is a quick
process; it could be implemented to test the quality of ham-
mers in cheaper pianos which are usually not voiced at all.

4. Experimental method

4.1. Force impulse and shock spectrum

A falling pendulum was used to apply a specified impulse to
the piano key, the force being transferred through the action

Pendulum

Flat Screw (string piece)

Charge
Amplifier FFT

Analyzer

Velocity
Flag

Force
Transducer

Figure 2. Experimental setup. The falling pendulum applies an im-
pulse to the piano key, which throws the hammer upward to strike
the force transducer. The velocity flag passes through a photogate in
order to measure the hammer velocity.

to throw the hammer upwards, as shown in Figure 2. The
upward-swinging piano hammer struck the smooth, flat head
of a screw (9 mm in diameter) attached to a Brüel & Kjær
8001 impedance head rigidly mounted in a lead brick support
(with approximate mass of 15 kg) , as shown in Figure 2. The
force transducer was positioned so that the "let-off" distance
between the hammer and the screw head was approximately
3mm, which is about the same value as the let-off distance
between the hammer and a bass string in a grand piano. The
screw head was flat to provide uniformity for all hammers
measured, as well as to prevent the hammer felt developing
grooves rubs against the strings, as in a piano. In preliminary
measurements, a 1 cm length of thick, double-wound piano
wire was used, but there was no noticeable difference in the
results when the flat screw was used instead.

The force signal from the impedance head was amplified
with a Brüel & Kjær 2651 charge amplifier, and fed into
an Ono Sokki CF-350 FFT analyzer. The residual shock
spectrum was obtained by multiplying the power spectrum
(Fourier transform of the force pulse) by!, as per Eq.(3). The
shape of the shock pulse was simultaneously recorded on a
second FFT analyzer, a Nicolet Scientific Corporation 660A,
in order to measure pulse width and peak force. Experimental
values of peak force covered the range of 5–310 N, which
compares well with values of 2–300 N reported by Hall and
Askenfelt [5].

4.2. Hammer velocity

The hammer velocity was measured with a Precision Timer
system from Vernier Software, consisting of four photogates
and software running on an 8086 computer. Two gates were
used: gate 1 acted as a trigger and gate 2 was used to de-
termine the average velocity of the hammer during the last
7:5mm of hammer travel prior to impact. Experimental ham-
mer velocities ranged from 0.6 m/s to 6.2 m/s. The pro-
gram measured time to the nearest 0:1ms, giving an uncer-
tainty of�0:3m/s (�6%) at 5m/s, and�0:005m/s (�0.8%)
at 0:6m/s, respectively. The measured range of velocities
agrees with Boutillon [8] and Askenfelt and Jansson [23].
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At velocities higher than 6.2 m/s the maximum force was
greater than 300N which was the maximum dynamic load
specification of the force transducer.

4.3. The piano hammers

The main set of piano hammers for this experiment belonged
to a complete grand piano action provided by Steinway &
Sons Inc. (model D 274 cm). The hammers were voiced by a
technician at the factory, and it appeared that they had been
in the piano for awhile since many of the hammers showed
slight grooves from rubbing against the piano strings.

A second set of hammers were removed from a 1972 model
B Steinway (211 cm) after having been voiced and adjusted
several times.1 They were removed from the piano because
they had become too hard, causing the piano to sound harsh,
and many hammers in the treble region did not have enough
felt left to be voiced any softer. The hammers were numbers 1,
13, 25, 37, 51, 63, 75, 86 from the keyboard, (corresponding
to notes A0, A1, A2, A3, B4, B5, B6, A#

7 , respectively)
and were still attached to their original shanks (complete
with flange, drop screw, bushing and center pin, and hammer
knuckle). This set will be referred to as "hard hammers."

A third set of hammers, in the following referred to as "soft
hammers," were unfinished hammers from an unspecified
Steinway grand piano. These hammers were softer than the
voiced set, because the softer, looser outer layers of felt had
not yet been filed off in the voicing process. The unfinished
wooden tails of the hammers were carved to approximately
correct shapes and glued to shanks taken from the 1972 model
B Steinway mentioned above. The unvoiced set of hammers
corresponded approximately to the positions 13, 37, 51, 64,
68, 73, 78, 85, 88 (A1, A3, B4, C6, E6, A6, D7, A7, C8,
respectively). Both the hard and soft hammer shanks were
mounted on a Steinway single-key action model.

5. Results

5.1. Pulse shape, duration, and peak amplitude

The force pulse recorded for hammer A3 from the hard ham-
mer set at a speed of 4 m/s is shown as the dashed curves in
Figure 3. The maximum force is 183 N and the half-width
is 0.24 ms. The asymmetry in the measured pulse is due
to the hysteresis of the hammer felt. The measured pulse is
compared with a half-sine pulse, a sine-squared pulse, and
a skewed versed-sine pulse (the product of a decaying ex-
ponential and a sine-squared pulse) in Figure 3 (a), (b), and
(c), respectively. These three shapes were chosen not only
because they fit the data rather well, but also because they
are shock shapes whose shock spectra are well documented
in the literature.

For comparison, the impulse obtained from an experimen-
tal hammer with a polyurethane elastomer head could be

1 The hard hammers were provided by David Graham, piano
technician for the Northern Illinois University School of Music.
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Figure 3. Shock pulse from hard A3 hammer at a speed of 4 m/s
(dashed curve) is compared with: (a) a half-sine pulse; (b) a sine-
squared pulse; (c) a skewed versed-sine pulse.
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Figure 4. Pulse half-widths vs peak force for a voiced D2 hammer
from a Steinway model D piano.

very closely approximated by a half-sine pulse, indicating a
linear behavior.2 As one would expect for a linear hammer,
the pulse duration remained essentially constant over the ve-
locity range of 1-5 m/s, whereas for all real piano hammers
measured in this study the pulse duration decreased with in-
creasing velocity. For hard hammer A3 the pulse half-width
decreased from 0.42 ms at 1 m/s to 0.23 at 5 m/s.

Figure 4 is a logarithmic plot of the pulse half-width versus
the peak force for the D2 hammer. From such a plot the
stiffness nonlinearity exponent p may be calculated using
Eq.(2). If the slope in Figure 4 is denoted by s then p =
(2s+1)�1 [10]. For theD2 hammer s=�0:27 corresponding
to p=2:2. Nonlinearity exponents for 13 voiced hammers and
6 hard hammers are compared in Figure 5. Exponent values
agree well with results of Hall and Askenfelt [5, 10]. The
exponent p is not a measure of the hammer felt stiffness,

2 The experimental hammer of polyurethane elastomer was sup-
plied by Anders Askenfelt, Dept. of Speech, Music and Hearing,
Royal Institute of Technology, Stockholm. This hammer had been
developed in cooperation with the Dept. of Polymer Technology at
the same institute.
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Figure 5. Effective stiffness nonlinearity exponents for 13 voiced
hammers (solid circles) and 6 hard hammers (open circles).

Table I. Values of a and b from fmax = avb for voiced hammers

Hammer a b

1 (A0) 763.2 0.41
6 (D1) 732.3 0.39

13 (A1) 639.7 0.41
18 (D2) 746.6 0.36
25 (A2) 723.2 0.40
30 (D3) 749.6 0.44
37 (A3) 755.6 0.46
42 (D4) 849.1 0.40
49 (A4) 827.1 0.46
61 (A5) 992.6 0.48
73 (A6) 1147.0 0.50
78 (D7) 1261.9 0.64
81 (F7) 1306.9 0.62

but rather a measure of how much the stiffness changes with
force. The greater the value of p the greater the range of
hammer stiffness. From Figure 5 we might predict that treble
hammers will show greater changes in stiffness than bass
hammers if both are tested over the same range of velocities.
Figure 5 also shows that most of the hard hammers have
lower exponent values than the voiced hammers, a result that
agrees with Hall and Askenfelt [5, 10]. This suggests that the
hard hammers should show smaller changes in stiffness than
the voiced hammers.

5.2. Residual shock spectra and the peak frequency

Figure 6 shows the residual shock spectrum measured for
hard hammer A3 at 4 m/s from Figure 3 compared to the
residual shock spectra calculated for the half-sine pulse, sine-
squared pulse, and skewed versed-sine pulse from Figure 3
(a), (b), and (c), respectively. The value of fmax predicted
by the skewed versed-sine pulse is about 140 Hz higher than
the measured value, and the sine-squared pulse prediction is
about 230 Hz to high. In both cases the amplitude is about
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Figure 6. Residual shock spectrum of hardA3 hammer at a speed of
4 m/s (solid curve) compared with residual shock spectra calculated
for the half-sine pulse, sine-squared pulse, and skewed versed-sine
pulse from Figure 3.

20% too low, but if we are only interested in the location of
fmax for a given velocity and only able to measure the pulse
shape, say with an oscilloscope, then either could be used as
a rough estimate to calculate the residual shock spectrum.

Figure 7 shows the residual shock spectra for the voiced
Steinway model D hammers A0 and F7 measured at veloc-
ities of 1 m/s and 4 m/s. The vertical line through the peak
of each spectrum locates fmax. For hammer A0, fmax is 775
Hz at 1 m/s and 1370 Hz at 4 m/s. For hammer F7, fmax is
1300 Hz at 1 m/s and 3038 Hz at 4 m/s. For both hammers,
as the velocity increases the shock spectrum broadens and
fmax shifts upwards in frequency. This is in direct contrast
to the linear polyurethane hammer which showed no change
in fmax as the velocity increased. The increase in frequency
observed in Figure 7 is not proportional to the increase in
velocity, nor is the rate of increase the same for the two
hammers. For hammer A0, fmax increases by a factor of 1:8
while the velocity increases by a factor of four. For ham-
mer F7, fmax increases by a factor of 2:3 while the velocity
increases by a factor of four.

The relationship between fmax and hammer velocity v is
more clearly shown in Figure 8 for hammersD1 andA4 from
the properly voiced Steinway model D set. This plot shows
very clearly that the increase in fmax is not proportional to
velocity, and that the range of fmax values is not the same for
both hammers. The data can be fit fairly well to an equation
of the form

fmax = avb ;

where the exponent b ranges between 0.4 and 0.5 for most
of the voiced Steinway hammers as shown in Table I. The
value of the exponent b determines the range of fmax values
for a given range of velocities; a larger value of b means a
hammer is efficient at exciting a wider range of frequencies.
There is a slight increase in values of b from bass to treble.
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Figure 7. Residual shock spectra for voiced Steinway model D hammers A0 and F7 at 1 and 4 m/s.

6. Discussion of results

6.1. Residual shock spectra and the peak frequency

The broadening of the residual shock spectra and the upward
shift of fmax, apparent in Figure 7, suggests that as hammer
velocity increases the hammer should become more effective
at exciting the high frequency modes of the string. The fun-
damental frequency of the string corresponding to hammer
A0 is 27:5 Hz. However, since fmax ranges from 775 Hz to
1406 Hz, it appears that hammer A0 will not be very effec-
tive at exciting the fundamental mode of its string. Rather, it
would be more effective at exciting modes of vibration with
frequencies between 500 Hz and 2000 Hz. The fundamental
frequency of the F7 string is 2794 Hz, which lies between
the values of fmax shown in Figure 7. Thus, hammer F7
should be effective in exciting the string fundamental, but
less effective in exciting the higher modes of the string.

Figure 9 shows the variation of fmax for velocities of
1, 2, 3, 4 and 5 m/s plotted as a function of position on the
keyboard of the voiced Steinway action. The curve represents
the frequencies of the notes of the musical scale, starting
with 27:5 Hz for A0 and ending with 4186 Hz for C8, the
frequency doubling every octave.

Figure 9 shows how fmax for each hammer shifts upward
in frequency as the velocity increases. It is interesting to note
that the smaller treble hammers have a much greater range of
fmax values than do the larger bass hammers; hammer #73
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Figure 8. Peak frequency fmax of the residual shock spectrum vs
hammer velocity for voiced hammers D1 (white) and A4 (black)
from a Steinway model D piano.

(C8) has a range of 1800 Hz while hammer #13 (A0) has a
range of only 650 Hz. We should recall that Figure 5 shows
a general increase in the value of the stiffness nonlinearity
exponent p from bass to treble. A high value of p means
a wider range of hammer stiffness, resulting in a range of
pulse durations and a corresponding wider range of peak
frequencies in the residual shock spectra.

It is also interesting to note, from Figure 9 that for any
given velocity fmax does not double with each octave along
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Figure 9. Peak frequencies of residual shock spectra for velocities of
1, 2, 3, 4, and 5 m/s for 15 voiced hammers from a Steinway model
D piano. Solid curve gives the fundamental frequencies of the 88
notes on the piano keyboard.

the keyboard. In the bass region, the values of fmax are
much higher than the fundamental frequency, while in the
treble region the values of fmax surround the fundamental.

Do these trends help us understand piano tone produc-
tion? In the lower two octaves of the piano keyboard, the
sound spectra show many high partials, the fundamental be-
ing noticeably weaker than the strongest partials (?). Sound
spectra for the A0 string extend up to about 3000 Hz and
contain up to 50 partials; the fundamental is as much as 25
dB lower than the strongest partial. Toward the middle of the
piano, the fundamental gains prominence, and though the up-
per frequency limit of the spectrum increases, the number of
partials decreases. In the upper two octaves, the fundamen-
tals completely dominate the sound spectra, and while the
spectra extend up to about 10 kHz, only one or two partials
are present. The role played by the piano soundboard in these
measurements of radiated sound spectra must be considered,
but Askenfelt and Jansson have shown similar results for
spectral measurements of the strings alone [21].

The data in Fig. 9 can explain this behavior of the piano
sound spectra. Let the range of values for fmax between
velocities of 1 and 5 m/s define an "effective hammer fre-
quency range," meaning that approximate frequency range
over which the hammer is capable of exciting string modes
most effectively. In the lower two octaves there is a large gap
between the string fundamental frequency and the effective
frequency range of the hammer, so that the hammer would
be most effective at exciting the high frequency modes of the
string, and less effective at exciting the fundamental. This
quality of the hammer, in addition to the fact that sound ra-
diation from the piano soundboard increases with frequency,
helps to explain the dominance of high-frequency partials in
the piano sound spectrum of the lower octaves.

In the middle of the keyboard, with fundamental string
frequency, the gap between the effective hammer frequency
range and the string fundamental narrows. In addition, the fre-
quencies of the higher modes of string vibration are increas-
ing, though the hammer’s effective frequency range stays
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Figure 10. Comparison of peak frequencies of residual shock spec-
trum for hard hammers (open symbols) from a Steinway model B
(211 cm) with a set of properly voiced hammers (filled symbols)
from a Steinway model D (274 cm).

fairly constant. For these middle octaves, the hammer ap-
pears to be less effective at exciting the high partials and
increasingly effective at exciting the fundamental frequency.

In the upper two octaves, the fundamental frequency of
the string is near the center of the effective frequency range
of the hammer, so that the hammer is able to strongly excite
the fundamental, but only one or two partials. For the tre-
ble hammers in a piano, however, the contact time is much
longer than the fundamental period and the absence of higher
frequencies is also a result of their being damped out by the
hammer before the string throws it away.

Having the hammer hit a fixed force transducer is a first
approximation to what actually occurs in a piano when the
hammer strikes the strings. However, we can use the trends
in fmax to approximately predict the ability of the hammer to
excite different modes of vibration in the string. The picture
of the hammer-string excitation given in Figure 9 seems very
reasonable in comparison to what is actually observed in a
real piano.

6.2. Residual shock spectrum and hammer hardness

Since the residual shock spectrum seems to work very well
in predicting the ability of the hammer to excite the string
modes of vibration, one could also use it to try to predict
the behavior of hard and soft hammers. Figure 10 shows the
values of fmax for the set of hard hammers at velocities of 1,
2, 3, 4 and 5 m/s plotted as a function of hammer position in
the keyboard, and compared to the properly voiced hammers.
Over the lower two-thirds of the keyboard, the values of fmax

at a given velocity are higher for the hard hammers than for
the properly voiced hammers while the range of fmax values
is approximately the same for both sets. The exception for
hard hammers 63 and 75 for velocities of 3-5 m/s are most
likely due to the fact that these hammers were very worn and
the condition of the felt was rather poor.

These trends may be explained using the results shown
in Figure 5 and Eq.(1). The stiffness, or hardness, of the
hammer, governed by K, determines the location of fmax; a
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harder hammer will have a higher fmax. This is demonstrated
in Figure 10. The variation of stiffness with applied force,
or velocity, is governed by the exponent p. Larger values of
p result in a larger range of fmax values. Figure 5 shows
that over the lower two-thirds of the piano, both hard and
voiced hammers have similar nonlinearity exponents, while
the voiced exponents for treble hammers have a much larger
value of p. Comparison of fmax ranges in Figure 10 shows
effect of this exponent behavior.

Ignoring the damaged treble hard hammers, one can con-
clude that the higher values of fmax for hard hammers sug-
gest that harder hammers would be better at exciting higher
frequency string vibrations than would a properly voiced
hammer. Indeed, the sound produced by a hard hammer is
"brighter" or "harsher" than that produced by normal ham-
mers. Measurements by Askenfelt and Jansson show that
string spectra resulting from a blow by a hard hammer con-
tain more partials than do string spectra resulting from a blow
by a soft hammer [21].

Figure 11 shows the fmax values for the unvoiced set of
soft hammers compared to the properly voiced hammers.
The looser, outer layers of felt have not been removed from
the unvoiced hammers, so that they are softer than the voiced
hammers. The values of fmax at a given velocity are lower for
the unvoiced hammers than for the properly voiced hammers.
In addition, the ranges of fmax values are narrower for the
unvoiced hammers. Unfortunately, values of the nonlinear
exponent p were not obtained for the unvoiced hammers, so
that conclusions concerning the relationship between Eq.(1)
and Figure 11 may only be suggested. Soft hammers would
not be expected to excite many higher frequencies in the
string vibration, and the envelope of the string spectra would
not change greatly for a wide range of hammer velocities.
Measurements by Askenfelt and Jansson [21] show that the
string spectrum produced by an overly-soft hammer is weak
in high harmonics and the resulting sound is often "dull." Fur-
ther experimentation is needed to completely understand the
relationship between a hammer’s stiffness K, nonlinear ex-
ponent p, and residual shock spectrum maximum frequency
fmax.

7. Conclusions

The residual shock spectrum has been shown to be a useful
tool for both measuring the hammer nonlinearity and for pre-
dicting the frequency range of string modes a hammer is most
likely to excite. The frequency fmax, corresponding to the
peak of the residual shock spectrum, represents the frequency
at which a piano hammer is most capable of exciting a string
mode. For a given hammer, as the hammer velocity increases,
the measured values of fmax also increases, though not pro-
portionally. This helps to explain how a harder key strike
(higher hammer velocity) produces a brighter tone than does
a soft strike (lower hammer velocity). Measurements of fmax

were obtained for several velocities, for 15 notes across the
entire piano keyboard defining "effective hammer frequency
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Figure 11. Comparison of peak frequencies of residual shock spec-
trum for unvoiced soft hammers (open symbols) from an unspecified
Steinway grand piano with a set of properly voiced hammers (filled
symbols) from a Steinway model D (274 cm).

ranges." In the bass, where string spectra show a weak funda-
mental and many harmonics, the effective frequency range of
the hammer lay significantly higher above the string funda-
mental, suggesting that the hammer would weakly excite the
fundamental while strongly exciting many higher harmon-
ics. In the middle range, where string spectra show stronger
fundamentals and fewer harmonics, the effective range of
the hammer was still higher than the fundamental, but not
nearly as much as for the bass region. In the treble, where
string spectra show a dominant fundamental with very few
harmonics, the effective hammer range included the fun-
damental, suggesting that a treble hammer would strongly
excite the fundamental, but weakly excite only one or two
harmonics.

Measurements for hard and soft hammers also agree well
with what is observed in the piano sound. The center of the
effective hammer range for the set of hard hammers was
higher than for the properly voiced hammers, suggesting
that hard hammers would excite more high harmonics. The
unvoiced, soft hammers had fmax values which were lower
than the properly voiced hammers, suggesting that softer
hammers would excite fewer high harmonics.

In addition to its usefulness in piano research, the residual
shock spectrum could serve as a useful guide in the produc-
tion and voicing of piano hammers. Prior to being placed in
a piano action, hammers could be tested for hardness, for
their stiffness nonlinearity exponent, and for their effective
frequency range.
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