On the sound field radiated by a tuning fork
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When a sounding tuning fork is brought close to the ear, and rotated about its long axis, four distinct
maxima and minima are heard. However, when the same tuning fork is rotated while being held at
arm’s length from the ear only two maxima and minima are heard. Misconceptions concerning this
phenomenon are addressed and the fundamental mode of the fork is described in terms of a linear
quadrupole source. Measured directivity patterns in the near field and far field of several forks agree
very well with theoretical predictions for a linear quadrupole. Other modes of vibration are shown
to radiate as dipole and lateral quadrupole sources20@ American Association of Physics Teachers.

[. INTRODUCTION Il. THE TUNING FORK AS A LATERAL
QUADRUPOLE

!f one rotates a sounding tuning fork once aboqt its long A typical explanation of the sound field produced by a
axis yvh|le holding the fork plose to the ear, one finds fourtuning fork goes something as follo%e:>®
positions where the sound is loud, alternating with four po-\yhen the tines move outward, a compression is sent out in
sitions where the sound is very qufeThe loud regions are the directions of A in Fig. (b) and simultaneously a rarefac-
indicated as A and B in Fig.(lb) and the quiet regions fall tjon in the directions of B. As the tines move inward they
approximately along the dotted lines. By rotating the forksend out a rarefaction in the directions of A and a compres-
close to the end of a tuned resonance tube this phenomenaion in the directions of B. These sets of waves are always in
may be demonstrated to a group of pedpldf one listens  opposite phase, and along the directions 45° from the plane
very carefully, one finds that maxima in the plane of the forkof the tines(dotted line$ the compressions of one set of
[regions A in Fig. 1b)] are noticeably louder than those waves and the rarefactions of the other will coincide, and
perpendicular to the forkregions B. there will be silence. _

A very different pattern of loud and quiet regions is heard, AS an example of a sound source which follows the above
however, when a sounding tuning fork is held at arm’s |engtrpescr|pt|on, consider a cylln_der whose radius alternately ex-
from the ear and rotated once about its long axis. Now, onlypar'dS and contracts according to
two maxima are heard, both in the plane of the fagdgions r(0,t)=R+coq26)sin wt), D

A.)’ while m"’“”.‘a are heard perpendicular to the_ fdrk- hereR is the mean radius of the cylinder. Figure 2 shows
gions B. The differences between near- and far-field soungyne cycle of the radial oscillation of the cylinder. The cylin-

patterns may be effectively demonstrated to a larger audiencgsr simultaneously elongates in the horizontal direction,
by using an inexpensive microphone and preamp connectesl;shing air outward, and contracts in the vertical direction
to an oscilloscope. drawing air inward. Half a cycle later the cylinder contracts
While several older acoustics texts describe the sounth the horizontal direction drawing air inward and expands in
field radiated by a tuning fork;® discussion of this phenom- the vertical direction pushing air outward. Figure 3 shows
enon is absent from recent acoustics texts. Unfortunatelfwo frames from an animation created with
those older texts which attempt to explain the sound fielMATHEMATICA ,'>*! which shows the sound field resulting
close to the fork do so in terms of constructive and destrucfrom Eq.(1). The animation is available as an animated GIF
tive interference effects. This would seem an implausiblgnovie on the WWW:? The two still frames differ by one
explanation since the tines of a tuning fork are almost alway&alf-period of the cylinder motion. It is clear to see that
separated by a distance much smaller than half a waveleng aves propagating in the horizontal and vertical directions
of the sound emitted, which means that interference effectdaVe opposite phase, and that the waves completely cancel

. R . along lines 45° from the horizontal.
should be noticed only at significant distances from the fork - I : . i
tines. Sillittd’ has shown that close to the fork it is path- A similar sound field is produced when four identical om

. . . ) nidirectional sources are placed in a lateral quadrupole ar-
length-dependent amplitude differences which determine thF‘angement as shown in Fig(&. Such an arrangement of

sound field and that path-length-dependent phase differencegyrces may be effectively demonstrated by passing a low
only become dominant at large distances from the fork.  frequency signal through four small boxed loudspeakers with
The goals of this paper are to address some of the miscomypposite polaritied® The expression for the complex sound
ceptions concerning the sound field radiated by a vibratingrressure amg)litude produced by a lateral quadrupole may be
tuning fork, to discuss the quadrupole nature of the tuninglerived a&*!
fork sound field, and to present experimental measurements A
of the near-field and far-field radiated patterns. While pri-  p(r, )= —
mary attention will focus on the sound field produced by the r
principal mode of the tuning fork, as shown in Figal  whereA is an amplitude factor which depends on the size,
radiation patterns from other less frequently observed vibrastrength, and frequency of the quadrupole source. The pres-
tional modes will also be discussed. ence of the 1" in the third term in parentheses indicates that

3, i3k)
r_2_k - sin @ cosé, 2
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Fig. 3. Frames from an animated GIF movieef. 12 animating the sound

_ o ) ) ) field produced by an oscillating cylinder according to Ef.
Fig. 1. (a) Principal mode of a tuning forkb) End view of a tuning fork

showing regions of loud and quiet.

Ill. THE TUNING FORK AS A LINEAR
QUADRUPOLE

this term is 90° out of phase from the other terms. The vari- \hen a tuning fork vibrates in its fundamental mode, the
ablek is the wave number(=2/\) andr is the distance to  tines oscillate symmetrically in the plane of the fork, as
the observer. The expression in H@) is valid for all dis-  shown in Fig. 1a). Each individual tine might be modeled
tancesr. At large distances (termed the far fieldthe pres- by a dipole sourcé’**much like an unbaffled loudspeak®r

sure amplitude may be approximated by and a transversely oscillating sph¥rare treated as a dipole

AK2 sources. Dipole sources are discussed further in Sec. V.
p(r,8)= — sin 6 cosé. ©) A combination of two dipole sources with opposite phase,
r such that the dipole axes lie along the same line, is called a
; linear, or longitudinal quadrupole source. The source distri-

The angular dependence is the same for Egs.and (3). i . . S

Moving from near field to far field has no effect on the an- bution for a Ilnear quadrupole is shown n Figab The_

gular dependence of the directivity pattern. exact expression for th_e presssure field radiated by a linear

Figure 4b) shows a polar plot of the directivity pattern for duadrupole may be derived'és
a lateral quadrupole source. For this and all following plots, A ik 1 K2 K2
the pressure amplitude is plotted on a logarithmic scale, with ~ p(r, )= T (1-3cog 0) s r_2+ 373 (4)

units of decibels. In addition, all plots have been normalized
to the maximum value, as is the accepted practice for direcFhe result by Sillittd gives an equivalent expression in terms
tivity plots.2® The directivity plot shows that the lateral quad- of Legendre polynomials and spherical Bessel functions.
rupole pressure field exhibits four directions where sound idigure 8b) is a polar plot showing the directivity pattern for
radiated very well alternating with four directions in which a longitudinal quadrupole with an observer distance
no sound is radiated. This directivity pattern matches nearly=0.05 m from a 426-Hz source, so that=0.39. The prod-
exactly the sound field predicted by the cylindrical source agict kr is typically used to define the boundary between the
shown in Fig. 3. near field and far field of a source. As a general rule of

A lateral quadrupole source model has been used to dghymb, if kr<1 the observer is in the near field, andkif
scribe the sound field of the tuning fofR While this might <1 the observer is in the far field.

appear to explain what one hears in.the near field of a tuning The near-field directivity pattern in Fig(1% matches what
fork, there are several problems. First, this model does nqf heard close to a tuning fork. There are four maxima, two
explain why one hears only two maxima and minima when, the plane of the fork and two perpendicular. However, the
the fork is held at arm’s length from the ear. If the tuning axima perpendicular to the plane of the fdet 90° and
fork behaved as a Iatergal quadrupole the sound field shou] 709 are approximately 5 dB lower than the maxima at 0°
be the same at any distance from the fork. Second, thi§ng180°. Since changes in sound pressure level of 5 dB are
model implies that close to the fork all four loud regions ¢jearly noticeable to the é4rthis difference in amplitude is

should be equally loud. However, close listening reveals thaite ohservable. Furthermore, the minima are not symmetri-
maxima in the plane of the fork are definitely louder than

those perpendicular to the plane of the fork. Third, as the
data will show, the minima do not fall exactly along 45°
from the plane of the tines.

®
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Fig. 2. The radial oscillation of a cylinder according to Efj). Times are Fig. 4. Lateral quadrupole model for a tuning folle) simple source ar-
fractions of one periodT, of the motion. rangement(b) directivity pattern.
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Fig. 5. Linear quadrupolea) simple source arrangemertt) near-field
directivity pattern forkr=0.39.
-50
cally spaced at 45° from the plane of the fork as predicted by
a lateral quadrupole model. Instead the first minima occurs at
approximately 54°. 100 N\ L
At large distances such thatkr>1 the exact expression ~100 50 0 50 100
in Eq. (4) approximates to
2 Fig. 7. Contour plot showing the pressure field produced by a longitudinal
. quadrupole. White represents the highest pressure and black represents the
p(r,0)= TCOS2 0. 5 lowest pressure.

Figure 6 compares the far-field directivity pattern calculated

from the exact expression in E¢d) with the far-field ap-  complete cycle of their motion. Readers are encouraged to
proximation in Eq.(5). In Fig. 6@a) the observer distance is yjew the animation to more clearly see the transition from
r=1m from a 426-Hz sourcek¢=7.8). These plots show near field to far field.
that in the far field of a linear quadrupole, only two maxima The contour plot and the animation show a significant
are present, with minima perpendicular to the plane of thevave front radiating away from the tines in the horizontal
fork. This matches what one observes when a tuning fork igjirections, as a result of the outer surface of the tines pushing
held at arm’s length from the ear. on the air as they oscillate back and forth. A much weaker
Figure 7 shows a contour plot of the pressure field prowave motion propagates in the vertical directions, with the
duced by a longitudinal quadrupole source. White representgmplitude decaying dramatically within the first 20 cm or so
the highest pressure and black the lowest pressure. The cofjom the fork.
tour plot represents a 100 ¢l 00 cm region with the source  The transition from near field to far field is the result of a
at the center of the plot; the two dipoles comprising thetransition from path-length-dependent amplitude differences
quadrupole, and representing the tuning fork tines, arelat to path-length-dependent phase differenc&onsider the
cm aligned horizontally. The wavelength is 80.5 cm, corre-tuning fork as a linear quadrupole arrangement of four point
sponding to a frequency of 426 Hthe speed of sound is sources, as in Fig.(8). When the observer location is very
taken to be 343 mjsThe pressure field shown correspondsclose to the center of the fork, along a vertical orientation,
to the time just after the tines have reached their maximunthe distance to the inner pair of sourd¢esO) is smaller than
outward positions, thus producing a maximum pressure rethat to the outer pai(+@®). Since the pressure from a point
gion in front of each tine in the horizontal directions. source decreases asr lthe pressure amplitude from the
The contour plot in Fig. 7 shows both the near-field andcloser inner pair of sources dominates the near field and a
far-field behavior of the pressure field. An animated versiorsignificant negative pressure is observed perpendicular to the
is available on the WWW? The animation is in color and source alignment. As one moves in the vertical direction
shows the pressure field as the fork tines go through ongway from the sources, the path length differences to each
source become negligible and the phase differences domi-
nate. Since there are an equal number of positive and nega-
tive sources, the pressures effectively cancel and there is
very little resultant vertically propagating wave motion in the
far field. A similar behavior may be observed for the electric
potential around an electric linear quadrupole sodfce.

IV. EXPERIMENTAL MEASUREMENTS

Measurements were made in the near and far fields of two
different sized 426.6-Hz aluminum tuning forks and a
2000-Hz aluminum fork. Dimensions for each fork are
shown in Table I. As shown in Fig. 8, a small NdFeB magnet
Fig. 6. Far-field directivity patterns for a linear quadrupdi. Exact ex- ~ Was attached, with wax, to each tine at about 3/4 of the tine
pression from Eq.(4) with kr=7.8; (b) far-field approximation from length from the top of the fork. An electromagnetic coil was
Eq. (5). placed over one magnet and driven by a sine wave generator
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Table I. Dimensions of tuning forks used in experiment.

Fork Tine Tine Tine Tine "ﬁ“%’.
frequency length separation width thickness /“’é“’ '?ov‘ oe
(H2) (cm) (cm) (cm) (cm) .,'~ s"]& “,‘
426.6 13.04 2.14 0.89 1.29 ’== X -‘.’5"'-5@' 0

426.6 1217 1.67 0.72 0.94 “'o?/l‘l\\\".'/
2000 6.22 1.11 0.71 0.93 %«"l‘p’b'
P

at the natural frequency of the loaded fork. The second mag
net provided symmetric loading on the other tine. The fork (b)

was firmly clamped in a support and centered on a rotatinr%_ S

turntable. Sound absorbing material was placed around thag- 9. Sound pressure level directivity patterns 5 cm from t‘he _sme_ill426-Hz
apparatus to reduce reflections from the table top and wall OrZ'd(ri) Blaetaf‘rgtrnwgh(gtera' quadrupole from E¢), (b) data fit with linear

A small Radio Shack electret microphone was mounted at P o

fixed distance from the center of the fork, at a height just

below the top of the fork. The microphone output was dis-pjane of the fork. Such a sound pattern would give the im-
played on a Stanford Research Systems model SR780 fagfession of two maxima in the plane of the fork and two
Fourier transform analyzer using units of sound pressurgninima perpendicular to the plane of the fork, as is observed
level (dB). The decibel level was measured every 5° as theyhen the fork is held at arm’s length from the ear.

fork was rotated about its long axis. Figure 11 shows measurements for the 2000-Hz fork at
~ Figure 9 shows the measured directivity pattemormal-  gistances of 4 and 78 cm. The loading of the magnet lowered
ized to the level at O°at a distance of 5 cm from the small e fyndamental frequency to 1960 Hz so tkat 1.44 and
426.6-Hz tuning fork. With the magnets attached, the funday  _ 5g g respectively. Both the near-field and far-field mea-

mental frequency of the fork was lowered to 418.76 Hz SOsurements match the theoretical curves quite closely. In the

that kr=0.38. The orientation of the fork is shown in the oo/ fie|d there are four maxima and four minima. In the far
figure by the two small rectangles at the center of the plotﬁe|d there are two maxima in the plane of the fork tines,

Figure 9a) attempts to fit the data with a lateral quadrupole,yhile perpendicular to the tines the sound pressure level is
directivity pattern using Eq2) while Fig. 9b) attempts to fit  55r5ximately 5 dB lower. The near-field pattern for the
the same data with a linear quadrupole directivity pattern,gnn - fork (4 cm-kr=1.44) looks very similar to the

using Eq.(4). While neither theoretical curve fits the data midfield directivity pattern for the 426.6-Hz fork (20cm

perfectly, the linear quadrupole curvd) more closely - .
matches the overall shape, and correctly predicts the 5-dg’ X =1.53), as should be expected since the valuekr of

reduction at 90° and 270°. In addition, the linear quadrupolé'® Similar.
fit also more closely matches the angular location of the Adreement between measurements and theory for both
minima, the first of which falls at approximately 50°. Slight N€ar and far fields verifies that the tuning fork behaves as a
dipear quadrupole source when vibrating in its fundamental
ode. A lateral quadrupole model, which is based on inter-

since the theory is for four point sources arranged as a line .
Y P g erence effects, does not match the measured sound fields.

qguadrupole, while the actual tuning fork is two rectangular

bars oscillating back and forth. Still, the linear quadrupole fit

is quite good, and much better than the lateral quadrupole filtY- RADIATION FROM OTHER VIBRATIONAL
At a distance of 20 cm from the small 426.6-Hz fotkr( MODES

=1.53), the fit between measured levels and linear quadru- \yhile the fundamental mode of a vibrating tuning fork
pole theory is still quite good, as shown in Fig(@0The fit  4¢ts |ike a longitudinal quadrupole source, there are other
is still good at a distance of 80 cnk(=6.13), which is
approximately arm’s length, in Fig. 16). While the theory
and data do not agree exactly near 90° and 270°, the mee
sured levels are more than 10 dB down from the levels in the

microphone
| DN ey
magnet
coil magnet
FFT Analyzer
oooo
. oooo
sine wave "l oooo
oooo
generator oooo
o [ K]
T

Fig. 10. Measured directivity patterns for the small 426-Hz fork at a dis-
tance of(a) 20 cm (kr=1.56) and(b) 88 cm (r=6.25) from the center of

Fig. 8. Experimental apparatus for measuring the directivity pattern forthe tines. The solid curve represents linear quadrupole theory and points
sound radiation from a tuning fork. represent data.
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Fig. 11. Measured directivity patterns for the 2000-Hz fork at a distance OfFig. 13. 275-Hz antisymmetric in-plane mode for the small 426.6-Hz fork.

(@ 4 cm (kr=1.46) and(b) 78 cm (r=28.6) from the center axis of & (5)'Relative tine motion(b) Measured directivity pattern at a distance of 5
2000-Hz tuning fork. The solid curve represents theory and points represerly, sglid curves are for a dipole from E).

data.

transversely oscillating sphere. Circular wave fronts with op-
modes of vibration which produce different directivity pat- posite phase are propagated left and right as the sphere
terns. The second most familiar vibrational mode of a tuningnmoves back and forth in the horizontal direction. Fluid di-
fork is the “clang” mode, which occurs at a frequency ap- rectly above and below the sphere sloshes back and forth as
proximately 6.25 times that of the fundamerftalhis mode  the sphere oscillates, but there is no wave propagation along
and the fundamental are termed symmetric since the tines affie vertical axis of the figurfcorresponding to 90° and 270°
the tuning fork both move outward or inward at the samein Fig. 12a)].
time. There are also antisymmetric in-plane modes in which Figure 13 shows the relative motion of the tines in the
the tines move together in the same direction, i.e., both to theywest antisymmetric mode and the resulting directivity pat-
right or both to the left at the same time. tern measured at a distance of 5 cm from the fork. The data

For the small 426.6-Hz tuning fork, the lowest frequencycan be rather well fit to the dipole expression in &), thus

antisymmetric in-plane mode occurred at 275 Hz when thevalidating our guess at modeling this vibrational mode as a
fork was firmly clamped at the stem. This mode cannot bejipole-type source. The measurements appear to be rotated
modeled as a quadrupole source, since both tines are movirgpckwise about 10° from the plane of the tines; the theory fit
together with the same phase. Instead, one might try a dipol@as rotated to match the data. This is probably due to an
source. Even though there are two tines, this should be anbalanced loading of the fork caused by the attached mag-
valid guess since the separation of the two tines is muchets.

smaller than a wavelength. In addition to the in-plane symmetric and antisymmetric
The pressure amplitude of the sound field radiated by amodes, there are also several modes of vibration in which the
acoustic dipole may be written ‘&s motion of the tines is perpendicular to the plane of the fork.
A’k In the Iowes_t fre_quency out-of-plane mode both tines move
p(r,0)= TCOSQ, (6)  together as in Fig. 14). For the large 426.6-Hz tuning fork,

this resonant vibration occurred at 344 Hz. The motion of the
whereA’ is an amplitude factor which depends on the sizelinesin this mode suggests a dipole-type behavior, as was the

strength, and frequency of the dipole source. Figurg)l2 Case for the in-plane antisymmetric mode. Figurebl4
show% a polar p?ot of ){he directi\?ity pattern forga ceiiiz)ole shows that measurements of the sound field radiated by this

source. Figure 1®) shows a frame from an animated GIF mode agree rather well with predicted results using the di-
movie? which illustrates the sound field produced by aPCle expression in E6).

180° - gm
U N
'!‘IA k\‘yl
TV

270°

(@) " ® (a)

Fig. 12. (a) Directivity pattern for a dipole sourcéb) Frame from a movie  Fig. 14. 344-Hz out-of-plane mode for the large 426-Hz tuning fdak.
(Ref. 12 showing the sound field produced by a dipole soya=illating Relative tine motion(b) Measured directivity pattern at a distance of 5 cm.
sphere. Solid curves are for a dipole from E¢f).
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Fig. 16. (a) Wineglass(b) Exaggerated top view of the glass vibrating in its
(a) (b) fundamental modé€c) Sound field measured at a distance of 20 cm from the
glass fit with a lateral quadrupole directivity pattern.

Fig. 15. 483-Hz out-of-plane mode for the large 426-Hz tuning fd&k.

Relative tine motion(b) Measured directivity pattern at a distance of 5 cm.

Solid curves are for a lateral quadrupole from E3). tempts at explaining the radiated sound field in terms of
compressions, rarefactions, and interference effects are un-
able to explain the details of the radiated sound field; a lat-

If the stem of the tuning fork is rigidly clamped so that the eral quadrupole-type source also does not correctly model
fork cannot rotate, a more prominent mode may be found imhoth the near- and far-field radiated patterns. A linear quad-
which the tines move with opposite phase perpendicular tgupole model appears to correctly predict the locations and
the plane of the fork. The frequency of this mode of vibra-relative amplitudes of observed maxima and minima both
tion is usually fairly close to the fundamental frequency ofwhen the fork is held close to the ear and when it is held at
the fork? In the large 426.6-Hz fork used in this experiment arm’s length. Other, less commonly observed, vibrational
this out-of-plane mode occurred at 482 Hz. Figur€al5 modes behave as dipole sources, and one mode exists in
shows the relative motion of the tines. This vibrational modewhich the tines move as a lateral quadrupole. The tuning fork
bears similarity to a lateral quadrupole source as described i8 thus a simple device which can be effectively used to

Sec. Il. As Fig. 180) shows, measurements of the sounddemonstrate the more advanced concept of near-field and

field radiated by this mode agree very well with lateral quad-<ar-field radiation as well as the behavior of a linear quadru-

rupole theory from Eq(2). pole acoustic source.

VI. OTHER OBSERVATIONS APPENDIX: SOUND FIELD FROM A WINEGLASS

Wood'" and Rayleigh” cite a simple experiment by  When a wineglass is made to vibrate in its fundamental
Stoke$® in which a piece of cardboard is lined up with the mode, either by rubbing a wet finger around the rim or by
fork tines. When the cardboard is held in regions A or B oftapping the glass with a knuckle, it vibrates in a fashion
Fig. 1(b), nothing happens, but when held along one of thesimilar to what is termed thé€2,0) mode of a belf®?” The
dotted lines in Fig. (b), the loudness of the fork dramati- radial cross section of the glass oscillates according to Eq.
cally increases. The dipole motion of each tine produces cir¢1), as shown in Fig. 2. A wine glass is thus a good example
culation of air around the tine as it vibrates back andof a lateral quadrupole source. An inexpensi$#.95 glass
forth.?* Placing cardboard along one of the dotted lines in-was driven at its fundamental frequency of 895 Hz, using a
terrupts this circulation and destroys the dipole nature of thgmall magnet and driving coil in the same manner as the
tine. This is akin to the increase in sound which results fromuning fork measurements. The resulting pressure sound field
placing a loudspeaker in a bafffé.Passing a tuning fork at 20 cm from the glass is shown in Fig. 16. The data fit very
throu%h a slot cut in a piece of cardboard produces the samsicely with a lateral quadrupole directivity pattern from Eq.
effect?1:2 (2), and provide further evidence that this type of sound

In a similar experiment, covering one of the tines with asource does not accurately model the behavior of a tuning
cylinder dramatically increases the sound level at what wagork vibrating in its fundamental mode.
previously a minimunt.An explanation for this effect is that
covering one tine changes a linear quadrupole into a dipoleiy, |, F. Helmholtz,On The Sensations of TotE885 edition reprinted by
Comparing Figs. &) and 12a), it is seen that the near-field  Dover, New York, 195% 2nd ed., p. 161.
directivity pattern for the dipole has a significant sound level ?T. M. Yarwood, Acoustics(Macmillan, London, 1958 pp. 81, 108—110.
at the location of a minimum for the linear quadrupole. The SE- S-ffiwgggfvavizgerkeley Physics Course Vol. @1cGraw—Hill,
sound level in the plane of the tines will also increase be-, W Yo' » P 032 . .
cause dipole sources are much more effective radiators ofiéggcggsfghe; coustical Foundations of Musiblorton, New York,
S(_)Uhd tha_n are_quadrUPO@SThe radiation efficiency of a sz . B. Stéphens and A. E. BatAcoustics and Vibrational Physics
dipole varies with the fourth power of frequency whereas (Edward Arnold, London, 1966140 pp.

guadrupole radiation varies as the sixth power. ®A. Wood, The Physics of Musi¢Chapman and Hall, London, 1975th
ed., pp. 19 and 20, 40 and 41.

R. M. Sillitto, “Angular distribution of the acoustic radiation from a tun-
VII. CONCLUDING REMARKS ing fork,” Am. J. Phys.34, 639-644(1966.
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‘and this is Fermi’s theory of beta decay.
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