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The acoustic intensity vector field around a tuning fork is investigated. Theory for a longitudinal
quadrupole source predicts a well-defined transition between near-field and far-field, with
significant circulation of sound energy in the near-field. Vector components of the time-averaged
intensity were measured using a two-microphone intensity probe and found to agree well with
predictions from theory. The vector intensity map is interpreted, and shown to provide useful
information about the near-field of an acoustic source. VC 2013 American Association of Physics Teachers.
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I. INTRODUCTION

The tuning fork is a simple apparatus that provides a wealth
of information about acoustic sources including a nonhar-
monic frequency spectrum,1,2 nonlinear generation of integer
harmonics,3 and an interesting radiated pressure field. In our
previous paper,4 we provided experimental evidence that a
tuning fork vibrating in its fundamental mode behaves as a
longitudinal quadrupole sound source, with a well-defined
transition between near-field and far-field radiation patterns.
Other less commonly observed vibrational modes were found
to produce dipole and lateral quadrupole radiation patterns.
Our experimental studies backed up the theoretical predictions
of the radiated pressure field in an earlier paper by Sillitto.5

One of the interesting features of Sillitto’s 1966 paper is
that in addition to predicting the pressure field dependence on
angle and distance, he also derived expressions for the acous-
tic intensity and predicted theoretical streamlines of the time-
averaged acoustic energy flow around the fork. At the time
when Sillitto’s paper was published, experimental methods
for reliably measuring acoustic intensity did not exist. How-
ever, since the early 1980s, the techniques and instrumentation
are now available to measure intensity directly.6

In this paper, we investigate the vector sound intensity
around a tuning fork. We first review the theoretical predic-
tions and then compare measured vector intensity to theory.
Finally, we discuss the transition from near-field to far-field
in the sound field radiated by the fork.

II. ACOUSTIC INTENSITY AROUND A TUNING
FORK

When a tuning fork vibrates in its fundamental mode, the
two tines oscillate back and forth symmetrically.3,7 A tuning
fork vibrating in its fundamental mode has been shown to
radiate sound in a manner consistent with the near-field and
far-field radiation patterns associated with a longitudinal
quadrupole sound source.4,5 Figure 1 shows the orientation
of the four point sources comprising the longitudinal quadru-
pole model used in the following theoretical analysis, with r
being the radial distance from the source and / being the
angle around the source measured from the axis of the longi-
tudinal quadrupole in the counterclockwise direction. The
pressure p radiated by a longitudinal quadrupole is5,8,9
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, k is the acoustic wavenumber (k ¼ 2p=k,
with k being the wavelength), and x ¼ 2pf is the angular
frequency. The quantity A is an amplitude factor that
depends on the strength, frequency, and dimensions of the
quadrupole source.

As this pressure sound wave radiates away from the
source it carries energy. Acoustic intensity is a measure of
the flow of the acoustic energy per unit time per unit area
carried by the sound wave radiated by a source. Intensity
is defined as the product of the sound pressure p and the
particle velocity ~u in the medium through which the sound
wave is traveling10

~IðtÞ ¼ pðtÞ~uðtÞ; (2)

where the arrows indicate that intensity and particle velocity
are vector quantities. Most of the time, one is interested in
the net flow of energy as represented by the time-averaged
intensity11,12

~I ¼ 1

2
Refp~u(g; (3)

where ( indicates the complex conjugate and Re indicates
taking the real part of the product.

The particle velocity ~u is related to the sound pressure
through the conservation of momentum by Euler’s equation13
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In polar coordinates this becomes
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where r̂ and /̂ represent the unit vectors in the radial and
counterclockwise angular directions, respectively. After tak-
ing the gradient of the pressure and then integrating with
respect to time, the radial and tangential components of the
particle velocity are found to be
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ejkr

r4
½ð9 cos2/$ 9Þð1þ jkrÞ$k2r2ð4 cos2/$ 1Þ

$ jk3r3cos2/'; ð6Þ

99 Am. J. Phys. 81 (2), February 2013 http://aapt.org/ajp VC 2013 American Association of Physics Teachers 99

Downloaded 23 Jan 2013 to 146.186.24.213. Redistribution subject to AAPT license or copyright; see http://ajp.aapt.org/authors/copyright_permission



u/ ¼
6k

r2

k2

3
$ 1

r2
$ jk

r

" #
cos / sin /: (7)

Multiplying the pressure from Eq. (1) by the complex con-
jugate of the components of the particle velocity from Eqs.
(6) and (7) and taking the real part of the result, one obtains
the vector components of the time-averaged intensity

Ir ¼
1$ 3 cos2/þ ðkrÞ2cos4/

r2ðkrÞ2
; (8)

I/ ¼ $
sinð2/Þ
r2ðkrÞ2

: (9)

The radial and tangential components of the intensity may be
mapped to rectangular components for plotting purposes by
using the geometric transformations

Ix ¼ Ir cos/$ I/ sin/; (10)

Iy ¼ Ir sin/þ I/ cos/: (11)

Figure 2 shows the “normalized” time-averaged intensity
vectors in one quadrant of the xy-plane into which a longitu-

dinal quadrupole source radiates sound, as predicted by Eqs.
(10) and (11) for a frequency of 421 Hz. The vector plot was
generated from the x and y components of the intensity using
the VectorPlot function in Mathematica.14 The lengths of the
intensity vectors have all been drawn the same in order to
emphasize the directional nature of the intensity field. With-
out this “normalization,” the magnitudes of the intensity vec-
tors in the far-field are too small to detect, due to the 1=r4

dependence of amplitude on distance. The axis of the longi-
tudinal quadrupole source of Fig. 1 is aligned with the x-axis
of Fig. 2.

Several interesting features are apparent from the vector
plot of time-averaged intensity predicted in Fig. 2. Along
the y-axis of the plot, in a direction perpendicular to the
plane of the fork tines, the time-averaged intensity is
directed outward away from the fork at all distances. How-
ever, along the x-direction, in the plane of the fork tines,
the time-averaged intensity points toward the fork tines for
distances closer than 0.18 m but changes direction to point
outward away from the fork tines at larger distances. The
rest of the plot shows significant circulation of intensity,
with the intensity in this quadrant circling around clockwise
for distances closer than 0.18 m, but pointing mostly out-
ward away from the fork at larger distances. The intensity
field is symmetric and can be easily mirrored to the other
three quadrants.

It is worth repeating that the time-averaged intensity rep-
resents the net flow of energy radiated by the tuning fork,
averaged over one complete cycle of the fork oscillation.
Therefore, the vectors in Fig. 2 do not change as the fork
tines oscillate.

Along the x-axis, parallel to the fork tines in Fig. 2, there
is a location at approximately 18 cm from the center of the
fork where the intensity vanishes, pointing inward toward
the fork tines for closer distances and outward away from the
fork tines for larger distances. The theory for the radial com-
ponent of the intensity from Eq. (8) predicts that the intensity
will vanish at a distance equal to k=ðp

ffiffiffi
2
p
Þ, which for a

421 Hz source is 18.3 cm.
It should be noted, however, that while the time-averaged

intensity vanishes at this point, the pressure due to the sound
wave does not vanish. If the fork is held at a distance of
18 cm from the ear, one can very easily hear the sound pres-
sure radiated by the tuning fork. Intensity is the product of
pressure and particle velocity and indicates the direction of
energy flow; the ear responds simply to the pressure ampli-
tude of the sound wave and the pressure does not vanish at
this location.

III. MEASUREMENTS OF ACOUSTIC INTENSITY

A. The two-microphone technique

To measure the time-averaged intensity around the
tuning fork we used an intensity probe consisting of two
identical phase-matched half-inch-diameter microphones,
facing each other and separated by a fixed distance.15 This
type of intensity probe is often referred to as a p-p probe,
because it calculates the intensity from two pressure
measurements.

The two-microphone technique requires a finite difference
approximation of the conservation of momentum in Eq. (4)
to express the particle velocity in terms of the pressure gradi-
ent between the two microphones

Fig. 1. Orientation of a longitudinal quadrupole source.

Fig. 2. Theoretical prediction of the “normalized” time-averaged acoustic
intensity vectors in one quadrant around a longitudinal quadrupole source of
frequency 421 Hz at the origin and aligned with the x-axis.
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u ) j

xq!r
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where pa and pb are the two pressure readings, !r is the
spacing between the microphones, q is the density of the air,
and x is the angular frequency of the signal, in this case the
frequency of the tuning fork. The intensity in Eq. (3) then
becomes

IðxÞ ¼ 1

2
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2
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$ %(& '
: (13)

The pressure gradient ensures that the intensity measurement
will include a directional component; the intensity will be
positive or negative depending on which microphone
measures a higher pressure value. Multiplying the terms
yields

IðxÞ ¼ 1

2
Re

$j

2xq!r
½pap(b $ pbp(a'

& '
; (14)

where we have ignored the auto-power spectra terms pbp(b
and pap(a because they are real quantities and don’t contrib-
ute to the real part of the final time-averaged intensity.16 The
difference between products of the pressures can be written
in terms of the imaginary part of the product

pap(b $ pbp(a ¼ 2jImfpap(bg; (15)

so that the intensity can be written in terms of the imaginary
part of the product of the pressures

IðxÞ ¼ Imfpap(bg
2xq!r

: (16)

If the pressure signals are recorded as frequency spectra
using a two-channel FFT analyzer, then one can calculate
the cross-spectrum12,16

Gab ¼
1

2
½X(aðxÞXbðxÞ'; (17)

where Xa and Xb represent the two frequency spectra.
Therefore, the time-averaged intensity can be obtained with
a two-microphone probe from the imaginary part of the
cross spectrum of the two pressure signals

IðxÞ ¼ ImfGabg
xq!r

: (18)

B. Experimental setup

A 426.6 Hz tuning fork (with tines 1.3-cm thick, 0.9-cm
wide, and 2.1-cm apart) was mounted in a stand with the
stem clamped. A small, 1.0-g NiFeB magnet was attached at
approximately the midpoint along the length on the outer
surface of each tine. An electromagnetic coil was placed
over one of the magnets, with the second magnet acting to
evenly distribute the mass-loading. The fork was driven at its
experimentally determined mass-loaded resonance frequency
of 421.1 Hz. The tuning fork and driving coil were placed on
a rotating turntable with the long axis of the tuning fork cen-
tered vertically on the turntable, and with both fork and coil

isolated from the turntable by a foam pad. The intensity
probe was positioned at a fixed distance from the center of
the fork, with the microphones centered approximately 1 cm
below the tip of the fork tines, as shown in Fig. 3. The
outputs of the two microphones were recorded using a two-
channel FFT analyzer. The turntable made one complete
revolution every 80 s. A total of 320 measurements were col-
lected for one complete rotation using the waterfall setting
on the analyzer, with a 125 ms time average, and skipping
every second record.

Intensity was measured at 2-cm increments from a dis-
tance of 9 cm from the central axis of the tuning fork (the
closest possible center-to-center distance between probe and
fork) out to 33 cm. At each distance, the radial and tangential
components of the intensity were recorded separately, due to

Fig. 3. Setup for measuring vector intensity around the tuning fork with a
two-microphone probe in the radial direction (top) and in the tangential
direction (bottom).
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the need to rotate the probe by 90*, as shown in Fig. 3. A
LabVIEW program was written to synchronize the intensity
data for the two components. Values for the radial and tan-
gential intensity vector components were then extracted by
keeping every fifth data point, corresponding to a measure-
ment every 5:6*around the circle. The sign of the tangential
components was reversed to account for the relative motion
between fork and probe; the turntable rotated the fork coun-
terclockwise in front of a stationary probe, rather than the
probe rotating around a stationary fork. The polar vector
components of intensity were then translated to rectangular
components for plotting with the ListVectorPlot function in
Mathematica.

C. Discussion of results

Figure 4 shows the measured vector intensity in one quad-
rant around the tuning fork. As with Fig. 2, the vectors were
“normalized” by drawing them all the same length to empha-
size the directional nature of the intensity field. The black
rectangles in the lower left corner of the figure represent the
dimensions of the fork tines to scale. The general features of
the measured data in Fig. 4 show very good agreement with
the theoretical prediction in Fig. 2. In the far-field, the time-
averaged intensity vectors essentially point outward, away
from the fork at all locations. In the near-field, the time-
averaged intensity points away from the fork along the
y-axis in a direction perpendicular to the plane of the tines,
but circulates around clockwise to point inward toward the
fork along the x-axis parallel to the plane of the tines. The
fact that the intensity vectors along the x-axis are not exactly
parallel to the axis is likely due to the fact that the intensity
measurements were averaged over 125 ms while the turnta-
ble was rotating, so a small tangential component shows up
where there should be none.

A more noticeable difference between theory and results
is the location along the x-axis where the time-averaged in-
tensity changes direction. Theory predicts that for a 421 Hz

source the change should occur at approximately 18 cm from
the source, while Fig. 4 shows that the actual location is
closer to 16 cm. Figure 5 compares the radial component of
the time-averaged intensity as predicted from Eq. (8) for
/ ¼ 0, along the x-axis parallel to the plane of the fork tines,
to experimentally measured values. At large distances, the
experimental data and theory agree very well. Differences
between data and theory become apparent in the transition
between near-field and far-field. The reason for this discrep-
ancy is most likely due to the fact that the longitudinal quad-
rupole model treats the tuning fork tines as spherical point
sources when the tines are really more like cantilever beams
with a transverse size of about 1 cm and a length of 13 cm. It
is interesting to note that a finite element computer model of
the tuning fork intensity, which models the fork tines as two
colinear dipole sources radiating into a two-dimensional
plane, predicts the turning point along the x-axis to occur at
a distance of 13.5 cm.17

IV. TRANSITION FROM NEAR-FIELD TO
FAR-FIELD

This paper, together with our previous work,4 effectively
demonstrates that the sound field radiated by a tuning fork
provides a very clear distinction between the near-field and
far-field regions around a longitudinal quadrupole source. If
the fork was a simple spherical source, the transition
between near-field and far-field would occur at kr ¼ 1, corre-
sponding to a distance r ¼ 0:16k. In the near-field of a sim-
ple source, where kr + 1, the pressure and particle velocity
are 90*out of phase and the complex radiation impedance is
dominated by its imaginary part, indicating that the near-
field primarily involves the local storage of energy in the
elastic (potential energy) and inertia (kinetic energy) proper-
ties of the medium. In the far-field of a simple source, where
kr , 1, the pressure and particle velocity are in phase and
the complex radiation impedance is dominated by its real
part, indicating that energy is carried away from the source
by the outward propagating sound waves.

For a more complicated sound source like the tuning fork,
which can be approximately modeled as a longitudinal quad-
rupole source, the transition from near-field to far-field
occurs slightly farther from the source, at r ¼ 0:225k. How-
ever, the relationship between pressure and particle velocity,
as well as the interpretations of radiation impedance, should
be the same as for a simple source. The vector plots in
Figs. 2 and 4 confirm the dominance of sound radiation in

Fig. 4. Measurement of the time-averaged acoustic intensity in one quadrant
around the tuning fork. Intensity vectors have been “normalized” in length.

Fig. 5. Comparison between theory from Eq. (8) and experimental data for
the radial component of the time-averaged intensity along the x-axis in the
plane of the fork tines.
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the far-field and the local storage of energy, as evidenced by
the circulation, in the near-field.

To confirm the relationships between pressure and particle
velocity, these two quantities were measured simultaneously
at various distances along the x-axis in the plane of the tun-
ing fork tines using a Microflown USP match probe.18,19 The
Microflown, also known as a p- u probe, measures the pres-
sure with a tiny microphone and the particle velocity with a
MEMS hot-wire anemometer transducer. Figure 6 shows
measured pressure (top traces) and particle velocity (bottom
traces) at distances of 7 cm and 80 cm from the tuning fork,
along the x-axis in the plane of the tuning fork tines. The dis-
tance of 7 cm is well within the near-field, and the measured
pressure and particle velocity are clearly about 90*out of
phase. At a distance of 80 cm, well into the far-field, the
pressure and particle velocity are now in phase.

V. CONCLUSION

In this paper, we have provided experimental evidence to
validate Sillitto’s theoretical model of the vector intensity
radiated by a vibrating tuning fork.5 As was the case for di-
rectivity measurements,4 the intensity data show a clear dis-
tinction between the near-field and far-field radiation
regions. In the near-field, the time-averaged intensity pre-
dominantly swirls around the fork, proceeding outward from
the perpendicular axis of the fork to circle around and point
back inward toward the fork tines. In the far-field, the time-
averaged intensity predominantly radiates outward away

from the fork in all directions. At the transition between
near-field and far-field, along the axis parallel to the fork
tines, there is a location where the time-averaged intensity
vanishes. Measurements of pressure and particle velocity in
the near- and far-fields show the expected phase relationship,
with p and u being 90*out of phase in the near-field and in
phase in the far-field. The simple tuning fork is shown to
provide a wealth of interesting information about acoustic
sources and radiated sound fields.
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