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SUMMARY 
Since Soize introduced the concept of fuzzy structures in structural acoustics there has been little activity 
clarifying the basic elements which underlie his theory. Soize’s papers are not easy reading due to the high 
level of mathematical formalism. In addition Soize simultaneously bases this fuzzy structure theory on two 
components: (1) a model for one Degree Of Freedom (DOF) fuzzy oscillators, and (2) a medium frequency 
solution method developed previously. It is unclear as to the role of the two components, although others 
have already undertaken a study of the medium frequency method by itself. 

In the present paper a fundamental analysis of the first component, the one-DOF fuzzy oscillators, is 
undertaken. The symbolic manipulation program Mathematica is utilized to gain insight into this compon- 
ent of Soize’s fuzzy theory. The resulting Mathematica simulations are easy to use and interpret, and they 
provide valuable insight into the parameters composing Soize’s fuzzy oscillators. It is determined that in 
many cases of structural acoustics, where there is small damping and a medium to high modal density, the 
fuzzy mass primarily determines what effect a discrete fuzzy oscillator will have as an attachment. 

INTRODUCTION 

In a series of articles Dr. Christian Soize of Office National de Recherches &Etudes Aerospatiale 
(ONERA) in Chatillon, France, has introduced the concept of fuzzy structures in the acoustic 
scattering from underwater structures.’.’ In Soize’s concept, that part of an underwater structure 
which is well known is called the master structure, and that part which is known imprecisely is 
called the structural fuzzy. See Figure 1, for example. To characterize the structural fuzzy, Soize 
represents the fuzzy as a collection of independent one Degree Of Freedom (DOF) oscillators 
with special properties. If one wanted to represent a finite circular cylindrical shell with hemi- 
spherical end caps as the master structure, one could represent the structural fuzzy by either 
(a) attaching discrete fuzzy one-DOF oscillators at specific points on the interior of the shell or 
(b) by smearing a distribution of fuzzy one-DOF oscillators per unit area over parts of the shell’s 
internal surface. 

In Soize’s articles the fuzzy structure theory is outlined in combination with a method he has 
previously used for solving large finite element vibration simulations in the medium frequency 
range.3 This medium frequency range method has been studied by others, independently of the 
fuzzy structure theory.* However, a lucid explanation of the fuzzy structure theory is lacking. 

To fully understand the underlying basis for Soize’s theory, the present authors have under- 
taken a study of Soize’s special one-DOF oscillators. The results of this study are presented in this 
paper. It is found that Soize’s fuzzy mass parameter primarily determines the effect of the 
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“Fuszy s- 

Figure 1. Soize’s concept of a well-known master structure with attached internal structural fuzzies, known imprecisely 

structural fuzzy on the master structure. Other effects due to Soize’s fuzzy critical damping 
parameter and fuzzy modal density parameter are also explained. 

These results were derived by modelling the one-DOF fuzzy oscillators using the symbolic 
manipulation program, Mathern~t ica .~  In fact, because of Mathernatica’s programmability, avail- 
ability of special functions, and easy to use notebook interface, the fuzzy simulations were 
implemented in a style not dissimilar from a commercial spreadsheet program. Outline of the rest 
of this paper is as follows: First, the underlying basis of Soize’s fuzzy one-DOF oscillators is 
examined. Next, the implementation of the models in Mathematica is explained. The three 
parameters of the fuzzy oscillators are varied to form a large battery of simulations. These 
simulations are described next, and the results are provided. This paper then ends with some 
conclusions. 

SOIZES FUZZY ONE-DOF OSCILLATORS 

In the fuzzy structure theory Soize envisions that the structural fuzzy is implemented as 
attachments on the inside of the master structure. Although Soize allows for the fuzzy to be 
spread over finite patches of the master structure interior, as a fuzzy per unit area, the present 
research only addresses the case of discrete one-DOF fuzzy oscillators. The discrete oscillators 
will have a known attachment point. This is consistent with the original Soize theory, although 
recently Soize has introduced spatial-memory fuzzies which do not have this restriction.6 As 
mentioned previously, when Soize actually implements a fuzzy structural dynamics simulation, 
a medium frequency method is also empl~yed.~ This medium frequency technique is not used in 
the present paper so as to clarify the role of the fuzzy oscillators themselves, apart from the 
medium frequency technique. 

The discrete oscillators examined here are assumed to be excited only in the direction normal 
to the surface at which they are attached. A normal displacement V(w) is generated due to the 
master structure moving and exerting a force F(w) on the fuzzy. In Figure 2 one can see that 
a one-DOF system is composed of a fuzzy mass p, a fuzzy stiffness K and a fuzzy damping C. 
However, instead of using these parameters directly, Soize prefers to use the parameters p for 
fuzzy mass, up for fuzzy natural frequency, and t for a fuzzy critical damping ratio. The two new 
quantities are related to the others by 

up = (K/p)’” 

and 

Here, the discrete oscillators are assumed to be weakly 

(2) 

damped so 0 c < < 1. 
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Figure 2. A discrete fuzzy one-DOF oscillator attached to the master structure. The master structure moves with normal 
displacement U(o) and exerts a force F(o) on the oscillator. The variables p, K and C represent mass, stiffness and 

damping, respectively 

In Soize's original detailed analysis, a fuzzy one-DOF oscillator was also represented by 
a simpler model for low frequency, below some cutoff frequency R,. This simpler model assumes 
no stiffness and damping but only mass, since for low frequency this is all the master structure 
'sees' as an impedance looking at the fuzzy. Because this special case is contained in the more 
general one, the one-DOF model including all three parameters: mass, stiffness and damping, will 
be considered in the present analysis. This is equivalent to setting R, = 0 in Soize's formulation. 

Since Soize wishes for the one-DOF model to be as general as possible, he considers the fuzzy 
mass, resonant frequency and critical damping ratio to be functions of frequency as p(w), wp(w) 
and ((a). Further, since one may not know the specific resonant frequency of the fuzzy oscillator, 
Soize represents this parameter wp(w) indirectly, by way of a fuzzy modal density n(w) with units 
s/rad. The fuzzy modal density n(w) is the number of natural frequencies that the fuzzy has within 
one rad/s. The use of a fuzzy modal density allows for the one-DOF oscillator to have an 
uncertain natural frequency. 

The three parameters that Soize employs in his simulations, and are under study in the present 
context, are p(w),((w) and n(w). To make some assumption about these parameters, Soize 
assumes that they take on some mean values p(o) ,  - <(o) and {(w), and have some deviation about 

Here K ,  5 and Y, are random variables, taking on values w..ich have absolute values assumed 
small compared to 1. 

In the simulations the &, for i = 1,2,3, are defined by dispersion parameters Ai and by random 
variables Xi. The variables Xi are real, mutually independent random variables which have 
a uniform probability density over the interval [ - f i ,  J?]. The yi are given by 

For example, suppose A1 = 0.2, A2 = 0.0 and I 3  = 0.1. These values mean that the fuzzy mass will 
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deviate about its mean by f 20 per cent, the fuzzy critical damping ratio will not vary from its 
mean value, and the fuzzy modal density will deviate about its mean by f 10 per cent. Further, 
the probability densities for the yl are written, assuming is known to have value yi, as 

given that yi is between - l i  and l i ,  and p i@,  yi) is zero otherwise. Additional details are 
available in Reference 1. 

To get back the natural frequency of the fuzzy wp(w) from the definition of the fuzzy modal 
density in equation (9, the following analysis is required, reproduced here from Reference 1. 
Define 240) to be distance between two natural frequencies in the vicinity of w. Hence, 

This means that, knowing & = y3, which is equivalent to knowing n(w), one can get the 
probability density of wp(w). Mathematically, the conditional probability density of wp given 
& = y, is 

for frequencies ii, between w - &(a) and w + ~ ( w )  and is zero otherwise. Thus, 

Pw,(w)(G,  O I Y d  = n(w) (10) 

for frequencies ii, between w - b(w, y3) and w + b(w, y3) and is zero otherwise. Here the new 
function b(o ,  y3) is defined by 

Equation (10) is a conditional probability density function for wp(w). To find the probability 
density for wp(w) itself, one can use 

Po,(o)(a 0) = P o , ( w ) ( G  wlY3)Pdw, Y 3 )  dy3 (12) s 
where p3(w, y3) is the probability density for Y3 defined in equation (7) and where the integration 
is taken over all possible values of y 3 .  Performing the integral in equation (1 2), Soize finds that 

- b(w) < 6 < 0 + b(w) 

10. otherwise 

where 
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and 

This expression is what makes for some difficulty in simulating the fuzzy one-DOF oscillator in 
a computer program. Numerically integrating equation (1 3) is not straightforward. 

One additional point must be made. In Soize’s model the master structure sees the fuzzy as the 
quantity 

where F(w) is the excitation force of the structure on the fuzzy and U(o) is the displacement of the 
master structure at this point. Here 

(15) Z(o) = - 0 2 R ( o )  + i w l ( 4  

where 

and 

are defined in terms of the three fuzzy parameters p(o), t(o) and ~ ~ ( 0 ) .  Soize calls 2 a boundary 
impedance in his original paper,’ which is not correct. Note that this terminology is corrected in 
his later work6 where he defines 

Soize consistently uses the eiwt time convention. 

MODELLING THE DISCRETE FUZZY OSCILLATORS IN MATHEMATICA 

Equation (13) gives the probability density function for the natural frequency of the fuzzy 
oscillator. Let us now define the cumulative probability distribution of the natural frequency of 
the fuzzy oscillator as: 

where wUppcr is the upper limit on the integration. Clearly, from introductory probability theory, if 
coUppcr -+ 00 then Po,(o) = 1. Looking at equation (13) more carefully, however, it is apparent that 
one can write equation (19) as 

and Pw,(@) will equal 1 when uupper equals 0 + a(o). 
This is the equation by which the natural frequencies of the fuzzy one-DOF oscillators are 

picked in the simulations. If one picks seeds from a uniform distribution of real numbers between 
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0 and 1 and then equates these seeds to Po,(o), the corresponding values of coupper denote the natural 
frequencies of the fuzzy oscillators. In this formulation, one controls the probability density 
function using the fuzzy modal density parameter n(w), and through equation (20) n(w) 
controls the selection of the natural frequencies. 

These equations were coded into a notebook of the symbolic manipulation program Math- 
emutica. Because equation (13) is not a smooth function, it is necessary to define the integral in 
equation (20) carefully, telling Mathematica where are the discontinuities in slope of equation (13). 
The Mathemutica NIntegrate function is used to integrate equation (20). 

Before any realizations of natural frequencies are computed in a simulation, a large look-up 
table is generated where each entry in the table contains (a) a value of ouppcr and (b) a correspond- 
ing value of Pa,,,,. This step simply calls for integrating equation (20) as many times as is necessary 
to fill out the table, given some range of ouppcr. 

Then to actually pick a natural frequency, one picks a real random number out of a uniform 
distribution from 0 to 1. The second column of the look-up table is searched to find the 
corresponding value of Pm,cm,, and then the corresponding value of ouppcr is found. This value 
wUpper is chosen as the natural frequency op(o) of the fuzzy oscillator. This value can be inserted in 
equations (16) and (17) along with the values of p(o) and ((a). 

The algorithm for the calculation of an impedance curve of a single discrete fuzzy oscillator, as 
implemented in Mathematica, is as follows: 

(1) Set the dispersion parameters for the fuzzy, A, ,  A2 and 13. 
(2) Set the mean values of mass, critical damping ratio and modal density, p, ( and 5 .  Also 

(3) Set up the random variables XI,  X2 and X 3 .  
(4) Calculate p(w),  ((0) and n ( o )  from equations (3)-(5). 
( 5 )  Calculate the frequencies for which equation (13) has a discontinuity in slope, w f a(w) 

(6) Define equation (13). 
(7) Create the look-up table by picking values of wUppcr, and integrating equation (20) for each. 
(8) Define wp to be a function which searches through the look-up table, given a random 

(9) Define the function Z(o) from equations (15)-(17). 

- -  
pick a mean value for the natural frequency of the fuzzy wp. 

and o f b(o). 

number from a uniform distribution from 0 to 1. 

(10) Plot the function Z(w)/(io) versus frequency for the one-DOF fuzzy oscillator. For each 
frequency the function is called, Mathernatica will generate appropriate p(o), r(o) and 
op(w) given their previous definitions. In the case of up, the value is found from the 
look-up table, based on the previously given definition of n(w). 

This mode of using Mathematicu is called rule based programming. Mathematica acts like an 
expert system by storing specified sets of rules concerning the variables for later use. When the 
function is actually plotted, the rules are used to find appropriate values for the function. 

This method of calculation is not dissimilar from how one uses a traditional spreadsheet 
program. The difference between Mathematica and a standard spreadsheet program is that 
Mathematica has the ability to perform certain high-level mathematical operations that spread- 
sheets cannot. 

It is important to note that for each frequency in a particular plot a new p(o), ((0) and wp(o) is 
accessed. The plots of Z(o)/io, therefore, will not be smooth functions. Instead, they will be 
scatter plots showing the general character of a number of plots in which p(w),  t ( w )  and wp(w) 
would have been fixed as functions of frequency. 
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Suppose one gives the command in step number 10 above repeatedly. Because of the probab- 
ilistic definition of the rules, every scatter plot that Mathernatica makes for Z(o)/(io) will be 
different, although the Ais and p , t  and remain the same. However, each plot will have 
a statistically similar distribution -of-data points and have the same general shape. 

SIMULATIONS AND RESULTS 

Numerous runs were made of the Mathernatica notebook ‘spreadsheet’. In this section some 
initial definitions are given, and then a selection of results are presented. 

In the simulations the mean of the fuzzy natural frequency w, was always picked to be 50 rad/s. 
If no uncertainty in natural frequency was desired, a large value ( x 100) of g was used, along with 
A 3  = 0. This ensures that a natural frequency occurs very close to 50 rad/s. If a wider variation in 
natural frequency was desired, a much smaller ( x 0.1) value of g was used. The value equal to 
0-1 with A 3  = 0 indicates that there is approximately a 1-in-10 chance that a natural frequency will 
appear in the frequency range of 495 to 505 rad/s. For a non-zero A,, the distribution of the 
natural frequencies is allowed to vary above or below the distribution corresponding to A 3  = 0. 

= 0.1 
and g = 100 s/rad. The result is seen in Figure 3 and clearly is the impedance curve of a one-DOF 
oscillator with no fuzziness. Here the magnitude of the force-to-velocity ratio, equal to Z(w) from 
equation (15) divided by io,  is plotted versus the driving frequency. If Figure 3 looks odd to the 
reader, recall that Z(w)/(io) represents the ratio of force that the master structure is exerting on 
the oscillator to the normal velocity of the master structure. This is a different convention for 
considering a one-DOF oscillator from that given in elementary mechanics textbooks, where the 
master structure is considered rigid, and where a force is applied to the mass and the velocity of 
the mass is examined. 

If some uncertainty in the mass is allowed, say up to 20 per cent variation, then Al’s value is 
changed to 0.20. The result is plotted, for a typical plot, as Figure 4. The impedance curve now has 
some fuzziness, and by overlaying Figures 3 and 4 one can see that Figure 4 has some deviation 
above and below the values on Figure 3, the non-fuzzy result. One should recall that Figure 4 is 
a typical plot and that rerunning the simulation with A I  = 0-2 will result in a plot with similar 
spread to Figure 3, but with different specific values for each frequency w. 

A large matrix of runs was made varying all of the relevant parameters of the fuzzy model. 
Some example runs are now described. First taking the parameters for Figure 3 for the baseline 
non-fuzzy result, if the critical damping ratio dispersion parameter A2 is changed from 0 to 0.2, 
with 1, = A3 = 0, Figure 5 results. In this case it is clear that fuzziness in the damping is primarily 

As a baseline for comparison a simulation was run with A1 = A2 = A3 = 0, p = 1 kg, 

Figure 3. Magnitude of impedance (N s/m) versus frequency (rad/s) curve for a one-DOF fuzzy oscillator with no 
uncertainty. Here A ,  = A2 = 1, = 0, p(o) = 1.0 kg <(m) = 0.1 and !(a) = lOOs/rad 
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Figure 4. Magnitude of impedance (N s/m) versus frequency (rad/s) curve for a one degree of freedom fuzzy oscillator 
with fuzzy mass. Here I ,  = 0 2 ,  I2 = I 3  = 0, p(o) = 1 0  kg, ((0) = 0 1  and ~(o) = 100 s/rad 
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Figure 5. Magnitude of impedance (N s/m) versus frequency (rad/s) curve for a one degree of freedom fuzzy oscillator 
with fuzzy damping. Here A, = 0, I2 = 0.2, I 3  = 0, ~ ( 0 )  = 1.0 kg, ( ( w )  = 0.1 and e(w) = 100 s/rad 

Figure 6. Magnitude of impedance (N s/m) versus frequency (rad/s) curve for a one degree of freedom fuzzy oscillator 
with fuzzy modal density. Here I, = A2 = 0. A, = 0 2 ,  ?(a) = 1.0 kg, ((0) = 0.1 and ~ ( w )  = 1 s/rad 

manifested for driving frequencies near the natural frequency of the oscillator. This result is 
intuitive. 

Further, if the baseline parameters are modified such that g = 1 s/rad and A 3  = 0.2 with all 
other values unchanged, the impedance function takes the form seen in Figure 6. This shows little 
deviation from Figure 3. If the value of g is further decreased to 01, a large deviation in form is 
seen in Figure 7. It is easily seen here that with the small mean modal density that uncertainty has 
been added in the natural frequency of the fuzzy. One can interpret this uncertainty in the 
impedance curve by imagining that the impedance curve of Figure 3 has been shifted from side to 
side in a random way. 

The major results of the large matrix of runs are as follows: 

0 For many situations which arise in structural acoustics, for which the damping is weak, and for 
moderate-to-high modal densities, the mass is the primary factor determining the effect of the 
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Figure 7. Magnitude of impedance (N s/m) versus frequency (rad/s) curve for a one degrec of freedom fuzzy oscillator 
with a smaller fuzzy modal density. Here A ,  = A2 = 0, A3 = 02. ?(a) = 1.0 kg, <(o) = 01 and !(a) = 01 s/rad 

fuzzy on the master structure. This assumes that the mean natural frequency of the oscillator 
under examination has a fixed value. 

0 The magnitude of the impedance curve is proportional to the mean mass of the fuzzy, p. 
Increased uncertainty in the mass results in larger deviations in the magnitude of the curve 
above and below the mean mass value. 

0 When the mean critical damping ratio is small ( z 0.1) fuzziness in the damping is primarily 
seen near the oscillator’s natural frequency. Higher uncertainty in the damping ratio corres- 
ponds to greater variations in the curve magnitude near the natural frequency. 

0 When the mean critical damping is large ( z 0.5) the magnitude of the impedance curve is 
decreased everywhere, and the curve is smoother. 

0 A moderate or high modal density affects the impedance curve very little. Values of y = 100 
and y = 1-0 s/rad give results which are not strikingly different. 

0 A low value of modal density has a profound effect on the impedance curve, spreading it out 
from side to side, but barely affecting the magnitude of the impedance. 

CONCLUSIONS 

This paper has introduced a method for modelling the fuzzy one-DOF oscillators which form the 
basis of the fuzzy structure theory of Soize. The fuzzy oscillators are examined apart from the 
medium frequency method Soize uses in his fuzzy simulations. The discrete fuzzy oscillator model 
described in this paper is straightforward, and one can perform repeated simulations by using the 
symbolic manipulation program Mathematica as one uses a spreadsheet program. The roles of 
various parameters in Soize’s discrete fuzzy models were determined after performing a large 
matrix of runs, changing values in the Mathematica simulations. It was determined that if the 
damping in the fuzzy is assumed small and if the modal density of the combined fuzzy struc- 
ture/master structure is moderate or large (which is often the case in structural acoustics 
problems), the fuzzy mass primarily determines the effect of the oscillator on the master structure. 
Future simplified models of fuzzy structures, therefore, may well be able to model complicated 
internals using only distributed mass-spring systems, neglecting the uncertainty in modal density 
and in critical damping ratio. 
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