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Tuning forks can vibrate in many different modes in which the tines move either in the plane or
perpendicular to the plane of the fork. Symmetrical modes can be modeled by the motion of two
cantilever beams, antisymmetrical modes by the motion of a beam with free ends. A tuning fork
vibrating in its fundamental mode is approximately a linear quadrupole sound source whose
strength can be increased by use of a baffle or by touching the stem to a soundboard. The motion of
the stem includes strong components at both the fundamental frequency and its second harmonic.
Slight alterations in a tuning fork can enhance or suppress either of these components. At large
amplitudes, the tines vibrate nonsinusoidaily, the nth harmonic increasing approximately as the

nth power of the fundamental.

L. INTRODUCTION

Tuning forks are familiar to musicians and physicists, in
fact to anyone who deals with sound and hearing. For
many years, they have enjoyed popularity as frequency
standards because they are stable, inexpensive, portable,
and require no electrical power. A simple description of
tuning fork vibrations appears in many general physics
texts, but more advanced mechanics books seldom men-
tion the more subtle features of their mechanical or acousti-
cal behavior.

In this paper we will attempt to briefly review the me-
chanical and acoustical behavior of tuning forks, especially
the normal modes of vibration and the nonlinear transfer of
energy from the tines to the stem. The effects of attaching
small masses and bending the tines will be discussed, and
simple laboratory and demonstration experiments de-
scribed.

I1I. MODES OF VIBRATION

The aluminum tuning forks most generally used in our
general physics laboratories have two rectangular 9X7-
mm tines spaced 10 mm apart. The length of the tines is
determined by the frequency of the fork. Attached to the
base where the tines join is a cylindrical stem approximate-
ly 8 mm in diameter and 45 mm long. To a first approxima-
tion, the fork can be considered to be made up of two canti-
levered bars joined together at the base.

For convenience, we classify the modes of vibration of a
tuning fork into four groups: (1) symmetrical modes in the
plane of the fork; (2) antisymmetrical modes in the plane;
(3) symmetrical modes out of the plane; (4) antisymmetri-
cal modes out of the plane. The first three in-plane modes
are shown in Fig. 1. Modes (a) and (c) belong to the first
group (symmetrical), while mode (b) belongs to the sec-
ond group above. Mode (a) is the principal mode, while
mode (c) is often referred to as the “clang” mode.! Mode
(b) would be the predominant one if a “sound post” were
inserted between the tines, forcing them to move in the
same direction.

In the symmetrical in-plane modes [e.g., (a) and (¢) in
Fig. 1], the motion of each tine more or less resembles that
of a cantilever beam whose modal frequencies f,, (for a thin
beam) are given by
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fo = (7K /8L*)WE /p[1.1942,2.988%,5%,7%,...,(2n — 1)?],
(D

where E is Young’s elastic modulus, p is density, L is the
length of the tines, and K is the radius of gyration of the

beam cross section (1/4/12 times the thickness for a bar
with rectangular cross section). The stem has a vertical
component of motion at twice the frequency of the tines,
although the amplitude of this second-order motion is
small except in the principal mode [Fig. 1(a)].

In the antisymmetrical in-plane modes [such as in Fig.
1(b) ], the entire fork bends in the manner of a beam with
free ends whose modal frequencies f, (for a thin beam of
uniform cross section) are given by

f, = (@K /8L*E /p[3.0113,5%,7%,..,(2n + 1)?].
(2)

Of course the fork does not have a uniform cross section
along its length (which now includes the stem as well as the
tines), so the nodes will not occur at equal distances from
the two ends as they do in a uniform beam. In the antisym-
metrical in-plane modes, the stem moves from side to side,
as shown in Fig. 1(b).

The symmetrical and antisymmetrical out-of-plane
modes would be expected to behave more or less the same
as the in-plane modes, although the bending stiffness is
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Fig. 1. First three in-plane vibrational modes of a tuning fork. (a) is the
principal mode; (c) is the “clang” mode.
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Fig. 2. (a) Tuning fork vibrating in its principal mode acts as a linear
quadrupole source. (b) Tuning fork vibrating in its ““clang” mode acts as
two linear quadrupoles, giving it an octupole character.

different, and so the frequencies are different from the cor-
responding families of in-plane modes.

The relative amplitudes of excitation of the various
modes depend upon where the tuning fork is struck. Strik-
ing near a node provides the least excitation for a given
mode, while striking near an antinode generally excites the
mode strongly. :

II1I. SOUND RADIATION

In its principal mode [Fig. 1(a)], a tuning fork essen-
tially acts as a linear quadrupole. As the tines move
outward, the air pressure between them decreases, while
the pressure on the outer surfaces increases, as shown in
Fig. 2(a). This can be demonstrated by passing the fork
through a slit in a sheet of paper, as shown in Fig. 3. When
either tine is centered in the slit, sound output audibly in-
creases, since a more efficient dipole source is created. The
clang mode acts as two unequal linear quadrupoles, as
shown in Fig. 2(b), giving it an octupole, as well as a quad-
rupole character.

Radiation from a quadrupole source is quite inefficient,
and thus the direct sound radiation from a tuning fork is
weak, especially one of low frequency. Quadrupole radi-
ation efficiency is proportional to the 6th power of frequen-
cy, however, so the clang mode (which has a frequency
roughly 6 times greater than that of the principal mode)
radiates roughly 50 000 ( = 6°) times more efficiently than
the principal mode. Thus even though the amplitude of the
clang mode is small, it is easily heard when the fork is first
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Fig. 3. When either tine of a tuning fork is centered in the slot, the paper
acts as a “baffle,” and the tuning fork radiates more like a dipole source
(or two monopole sources if the paper is large enough).
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struck. To hear the principal note of a tuning fork clearly,
the stem is usually placed in contact with some type of
sounding board.

IV. MOTION OF THE STEM

The stem of a tuning fork moves in a rather complex way
when the tines of the fork vibrate. In the symmetric modes,
the motion of the stem is mainly longitudinal [Fig. 1(a)];
in the antisymmetric modes, its motion is mainly trans-
verse [Fig. 1(b)].

The longitudinal motion of the stem is not sinusoidal.
There is a strong second harmonic component in its mo-
tion, and higher harmonics appear as well. The mechanism
mainly responsible for generating the second harmonic is
illustrated by the simple mechanical model in Fig. 4. Ima-
gine the two tines of the fork to be bars swinging back and
forth. Each time they make one full trip back and forth, the
stem moves up and down twice. The amplitude of the stem
is much smaller than that of the tines, but it increases with
the square of the tine amplitude (just as the second har-
monic of the tine itself), so at large amplitude it makes its
presence known.

The relative amplitudes of the harmonics in the stem
motion are strongly dependent on the amplitude of vibra-
tion. For a striking blow of normal strength, the fundamen-
tal and second harmonic will generally have about the same
amplitude, but after a hard blow the second harmonic can
be considerably larger.

When a tuning fork is altered, so as to change its symme-
try, the balance between the fundamental and second har-
monic in the stem motion changes. We found that bending
the tines inward, for example, inhibits the second harmon-
ic. The fork now tends to oscillate between frame 4 and
frame 5 in Fig. 4, driving the stem up and down at the
fundamental frequency. Adding small masses to the inner
surfaces of the tines, on the other hand, inhibits the funda-
mental, as noted by Rayleigh.? Adding mass to the outer
surface of the tines has less effect.

When a piano tuner touches the stem of a tuning fork
against a piano soundboard, it is the longitudinal motion of
the stem that drives the soundboard. If the fork is given a
hard blow [Fig. 5(b) ], the second-harmonic component of
the stem motion may be greater than the fundamental.
However, it dies out faster, and so after a certain time the
fundamental dominates, as in Fig. 5(a). For a soft blow,
the motion of the tine and stem is more like (a) from the
very beginning. The “clang mode” also drives the stem at
its second harmonic frequency, but the amplitude is gener-
ally very small, so it is not a factor in the sound radiated by
the soundboard.

V. NONLINEAR BEHAVIOR

At sufficiently large amplitudes, most oscillators exhibit
nonlinear behavior. Two common nonlinear phenomena
are: a transition from sinusoidal to nonsinusoidal motion
(leading to generation of harmonics) and a shift in modal
frequency. Both of these effects can be observed in tuning
forks at moderately large amplitudes.

Modal frequencies in oscillators can shift either upward
or downward at large amplitude, depending upon whether
the stiffness increases or decreases with increasing ampli-
tude. If the effective spring constant increases with ampli-
tude (hardening spring system ), the frequency rises; if the
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Fig. 4. Mechanical model of a tuning fork illustrating how motion of the
tines at a frequency f causes the stem to move at a frequency 2f.
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Fig. 5. (a) A soft blow generates a small second harmonic in the stem
motion; (b) a hard blow generates a small second harmonic in the tine
motion and a large second harmonic in the stem motion.

spring constant decreases with amplitude (softening spring
system), the frequency falls. A vibrating string generally
behaves as a hardening spring system, while a pendulum
behaves as a softening spring system. An interesting exam-
ple from the musical world is a pair of gongs used in Chin-
ese opera. One gong shows hardening spring behavior,
while the other shows softening spring behavior. Thus the
pitch of one gong glides upward after striking, while the
pitch of the other one glides downward.® A discussion of
nonlinear vibrating systems is given in Ref. 4 Chap. 5.

In a cantilever beam the first mode of vibration shows
hardening spring behavior, while the second mode shows
softening spring behavior.® In a free—free beam, on the oth-
er hand, both modes show hardening spring behavior. This
suggests that some modes of a tuning fork may be higher
than normal immediately after striking a hard blow while
others may be lower.

VI. EXPERIMENTAL STUDIES
A. Modes of vibration

A small (0.22 g) NdFeB magnet was attached to one
tine of the fork, and positioned in the magnetic field of a
small coil with 300 turns. A sinusoidal current was sup-
plied to the coil by an audio amplifier, and the near-field
sound was scanned with a small electret microphone to
locate the nodes and antinodes. The fork was freely sus-
pended by rubber bands. The magnet was mounted in two
different orientations to excite in-plane and out-of-plane
modes. The experimental setup is similar to that described
in Ref. 6.

The modal frequencies of the in-plane modes of a typical
384-Hz tuning fork are shown in Fig. 6. The symmetrical
in-plane modes are plotted against 2z — 1 in accordance
with Eq. (1). Note that the first mode lies at 1.194 rather
than 1, as predicted for a cantilevered beam. The antisym-
metrical modes are plotted against 2n + 1 in accordance
with Eq. (2). Note that each series of mode frequencies can
be reasonably well fit to a line with a slope of 2. The sym-
metrical modes are higher in frequency, because the effec-
tive length in Eq. (1) is essentially the length of the tines,
whereas the effective length of the antisymmetrical modes
in Eq. (2) is the entire length of the fork.

The modal frequencies and locations of the nodes for the
same fork are given in Table I. The mass of the small mag-
net has lowered all the modal frequencies slightly (e.g., the
fundamental from 384 to 383 Hz). The tines of this fork are
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Fig. 6. Modal frequencies of in-plane vibrational modes of a 384-Hz tun-
ing fork. Symmetrical modes are plotted vs 27 — 1 while antisymmetric
modes are plotted vs 21 + 1. Solid lines have a slope of 2.

122 mm long, the stem is 43 mm long, and the total length
of the fork is 183 mm.

The most significant frequency ratio is the ratio of the
“clang” mode to the fundamental mode. This ratio is rela-
tively constant in forks of different lengths from the same
manufacturer. In the 384-Hz fork of Table I, this ratio is
6.13;ina 320-Hz fork (189 mm long) itis 6.16; in a 256-Hz
fork (212 mm long), it is 6.20. This ratio, of course, de-
pends upon the design of the tuning fork. (It is reported
that some manufacturers design the base of the fork so that
these frequencies have the harmonic ratio 6.00; we have not
investigated this.)

The out-of-plane mode frequencies are shown in Fig. 7.
They deviate considerably more from the lines drawn with
a slope of 2 than the in-plane modes in Fig. 6 do.

B. Motion of the stem

The motion of the stem was measured by attaching a
small accelerometer (PCB 309A, mass = 1 g) to the bot-

Table I. In-plane vibration modes of a tuning fork.

tom of the stem. Figure 8 shows the amplitudes of the fun-
damental and second harmonic of a 320-Hz tuning fork for
blow strengths covering a rather wide range. Note that the
second harmonic amplitude is proportional to the square of
the fundamental amplitude (i.e., the line in Fig. 8 has a
slope p=2), and that their amplitudes become equal
slightly above the range shown.

In a related experiment, the accelerometer was attached
near the center of a 50-cm square sheet of 1/4-in. plywood
and the stem of the 320-Hz fork was touched to the sound-
board about 5 cm away. Figure 9 shows the amplitudes of
the fundamental and second harmonic. Again the second
harmonic amplitude is proportional to the square of the
fundamental amplitude, but in this case it exceeds the fun-
damental over most of the range of blow strength. In other
words, the second harmonic component of motion is trans-
ferred more efficiently than the fundamental to the wood
sounding board.

C. Nonlinear motion of the tines

In this experiment, a 1-g accelerometer was attached to
one tine of a 320-Hz tuning fork and a 1-g mass to the other
tine. A second accelerometer was attached to the stem. Fig-
ure 10 shows the amplitudes of the 2nd, 3rd, and 4th har-
monics of time motion compared to the fundamental am-
plitude. The 2nd, 3rd, and 4th harmonics are seen to be
nearly proportional to the 2nd, 3rd, and 4th powérs of the
fundamental (i.e., their amplitudes lie along lines with
slopes of 2, 3, and 4), as predicted by simple nonlinear
vibration theory.

The amplitudes of the stem and tines are compared in
Fig. 11. The amplitude of the fundamental and 2nd har-
monic motion of the stem are proportional to the first and
second powers of the tine fundamental. The accelerometer
attached to the stem has approximately twice the sensitiv-
ity of the one attached to the tine, so the stem fundamental
and second harmonic amplitudes 4, (s) and 4, (s) can be
expressed as

A, () =3.3%107°4, (1) and 4, (s) = 7.8X10~*42(2),
where 4, (2) is the amplitude of the fundamental compo-
nent in the tine motion (in mm).

D. Altered tuning forks

Figure 12 compares the spectrum of the stem motion of a
normal 320-Hz tuning fork with that of the same fork with

Mode number Frequency Node locations
(n) Type (Hz) Ratio (mm from tip)
1 symmetric 383 1.0 -
2 symmetric 2346 6.1 29
3 symmetric 6391 16.7 17 63
4 symmetric 12075 315 15 45 83
5 symmetric 19330 50.5 11 36 71 92
1 antisymetric 1250 3.3 41 136
2 antisymetric 3650 9.5 35 92 136
3 antisymetric 7650 20.0 16 58 106 140
4 antisymetric 12309 32.1 13 45 82 122 171
5 antisymetric 19225 50.2 11 36 71 92 121 178
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20 N B I R O P
Va ’
- -
10| =
5 °C _
- B 7 7
2 - =
5 o -
Z
8
8’ 1 o~
=~ ]
& ]
0.5 T
® Symmetrical Modes -
® Asymmetrical Modes -
0.2 =
0.1 | 1 1 1 11111
1 2 5 10 20
20-1 (@) 2n+1 (w)

Fig. 7. Modal frequencies of out-of-plane vibrational modes of a 384-Hz
tuning fork. Symmetrical modes are plotted vs 2n — 1, antisymmetrical
modes vs 2n + 1. Solid lines have a slope of 2, while dashed lines are
adjusted for the best fit.

the tines bent inward (3 mm spacing between tines at the
tip compared to 10 mm at the base). Note that in the nor-
mal fork, the 2nd harmonic exceeds the fundamental by 5
dB; after bending the tines the 2nd harmonic amplitude is
15 dB below the fundamental for a blow of about the same
strength.

Attaching 1-g masses to the inside of each tine near the
tip of the fork lowered the fundamental amplitude of the
stem motion by about 10 dB but left the amplitude of the
second harmonic about the same. Attaching the same
masses to the outside of each tine had little effect on either
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Fig. 8. Fundamental and second harmonic amplitudes of the stem of a

320-Hz tuning fork excited by blows of different strengths.
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Fig. 9. Fundamental and second harmonic amplitudes measured by an
accelerometer attached to a soundboard 5 cm from the stem of a 320-Hz
tuning fork.

the fundamental or second harmonic (the fundamental
was raised slightly, the second harmonic remained the
same).

E. Resonators tuned to the fundamental and second
harmonic

A popular classroom demonstration makes use of box
resonators with one open end having a tuning fork attached
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Fig. 10. Amplitudes of 2nd, 3rd, and 4th harmonics in the motion of the
tines of a 320-Hz tuning fork compared to the fundamental amplitude.
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Fig. 11. Amplitudes of fundamental and second harmonic components in
the stem motion in a 320-Hz tuning fork compared to the fundamental
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to the upper surface. We have added a sliding plunger to
such a box so that it can be tuned to either the fundamental
or the second harmonic of the fork. Figure 13 shows sound
spectra that result from a normal 320-Hz fork, one with the
tines bent inward, and one with 1-g masses added to the
inside surface of each tine.

VII. DISCUSSION OF EXPERIMENTAL RESULTS

It is interesting to note how well the in-plane modes in
Fig. 6 follow the simple mechanical models (two cantile-
vered beams in the symmetric case and a single beam with
free ends in the antisymmetric case) insofar as having fre-

Normal

----Bent -

FREQUENCY (kHz)

Fig. 12. Acceleration levels of the stem of a 320-Hz tuning fork compared
to the same fork with the tines bent inward. Bending the tines increases the
fundamental and decreases the second harmonic component of the mo-
tion.

quencies proportional to (2n — 1)?and (27 + 1), respec-
tively. The node locations are also reasonably consistent
with these simple models, considering the nonuniform
cross section of the fork.

The out-of-plane modes in Fig. 7 conform less precisely
to these models. The observed modal frequencies are pro-
portional to (2n — 1)"®and (2n + 1), respectively. The
reason for this difference is not clear. The antisymmetric
out-of-plane modes occur at slightly higher frequencies
than the corresponding in-plane modes, reflecting the
greater bending stiffness for in-plane bending at the base of
the fork.

The second harmonic component in the stem motion is
very nearly proportional to the square of the fundamental
component (and to the amplitude of the tines), which is
consistent with the simple mechanical model for second
harmonic generation in Fig. 4. It is interesting to note, by
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Fig. 13. Sound spectra radiated by a 320-Hz tuning fork with the stem in contact with an open-end box resonator that can be tuned to the fundamental or

the second harmonic.
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comparing Figs. 8 and 9, how much more efficiently energy
is transferred to the soundboard at the second harmonic
frequency than at the fundamental frequency.

The motion of the tines at large amplitudes becomes
nonsinusoidal in a predictable way. The amplitudes of the
2nd, 3rd, and 4th harmonics are observed to be proportion-
al to the 2nd, 3rd, and 4th powers of the fundamental am-
plitude. Bending the tines of a tuning fork inward was
found to increase the fundamental component in the stem
motion and to decrease the second harmonic. This result is
consistent with the simple mechanical model shown in Fig,
4. However, it appears to be contrary to Rayleigh’s obser-
vation that the fundamental component is decreased by
bending the tines inward.?

Attaching small masses to the inner surface of the tines
was found to decrease the fundamental component in the
stem motion, as observed by Rayleigh.” Why our forks
behaved in the same way as Rayleigh’s in the mass-loading
experiment but different from his when the tines were bent
inward is not clear. Undoubtedly the behavior depends
upon the exact shape of the fork, and further investigation
using forks of different shapes would be worthwhile.

The difference between the effects of adding small
masses to the inner and the outer surfaces of the tines needs
further study. Apparently the difference is related to the
direction in shift of the center of mass of the tines. Shifting
it outward has much less effect than shifting it inward.

Since the observed tuning fork mode shapes resemble
those of uniform beams with clamped-free (symmetrical
modes) and free-free (antisymmetrical modes) end condi-
tions, it is interesting to compare the observed mode fre-
quencies with those calculated for such beams. Applying
Eq. (1) to a clamped—free beam 122 mm long and 7 mm
thick and using V E /p = 5150 m/s, gives mode frequencies
of 391, 2451, 6864 Hz, etc. which compare quite favorably
(within 7% ) to the observed symmetric mode frequencies
(see Table I).

The antisymmetric modes are more difficult to model,
because the cross section of the fork is substantially differ-
ent for the tines and the stem. For a uniform beam having a
length (183 mm) equal to the total fork length and a thick-
ness of 7 mm, application of Eq. (2) gives mode frequen-
cies of 1106, 3051, 5979 Hz, etc., which are 129%-22%
greater than the observed frequencies of the antisymmetric
modes. This is to be expected, since the cross-sectional area
of the stem is less than half the combined cross section of
the two tines. This nonuniform cross section appears to
affect the mode frequencies more than the mode shapes.

Simple apparatus for demonstrating the effect shown in
Fig. 13 was displayed in an exhibit and competition of low-
cost (under $25) apparatus held at the 1990 summer meet-
ing of the American Association of Physics Teachers in
Minneapolis.

VIIL. CONCLUDING REMARKS

Tuning forks are very interesting mechanical oscillators.
Although widely used by musicians, scientists, engineers,
and medical practitioners, certain features of their me-
chanical behavior are not well understood. Hopefully this
paper will add, in a modest way, to that understanding.
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relied on more elementary humor.
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THE PYTHAGOREAN THEOREM

In one of my trigonometry classes [at Cornell in the early 1940s] I discovered to my great
surprise that a few students claimed never to have heard of the Pythagorean theorem. It may have
been because of the quaint way in which I pronounced or mispronounced Pythagoras but this
obvious explanation did not occur to me. “Did you know,” I addressed the students, “that
Pythagoras was so elated when he proved his theorem that he sacrificed a hundred oxen to the
Greek gods in gratitude for the inspiration? And that since those days all oxen tremble when a
truth is found? I was quoting a famous line of Heine’s. Nobody smiled and from that moment on I
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