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Fundamental Structural-Acoustic 
Idealizations for Structures with 
Fuzzy Internals 
Fundamental issues relative to structural vibration and to scattering of sound from 
structures with imprecisely known internals are explored, with the master structure taken 
as a rectangular plate in a rigid baffle, which faces an unbounded fluid medium on the 
external side. On the internal side is a fuzzy structure, consisting of a random array of 
point-attached spring-mass systems. The theory predicts that the fuzzy internal structure 
can be approximated by a statistical average in which the only relevant property is a 
function rhp(fl) which gives a smoothed-out total mass, per unit plate area, of all those 
attached oscillators which have their natural frequencies less than a given value fl. The 
theory also predicts that the exact value of the damping in the fuzzy structure is of little 
importance, because the structure, even in the limit of zero damping, actually absorbs 
energy with an apparent frequency-dependent damping constant proportional to 
dfhp(u))/doi incorporated into the dynamical description of the master structure. A 
small finite value of damping within the internals will cause little appreciable change to 
this limiting value. 

1 Introduction 
Various large man-made structures of practical interest 

consist of an outer metallic shell with a somewhat compli
cated internal structure. The outer shell is reasonably easy to 
describe and to model in regard to dynamic and structural 
acoustic behavior. The interior structure, in contrast, pre
sents formidable difficulties, even to one who has access to 
detailed blueprints. In particular, one has relatively little 
hope of knowing at the outset all of the parameters that 
would be appropriate to fully account for the dissipation of 
vibratory energy within the structure. 

Insofar as one is mainly interested only in larger scale 
vibrations of the outer shell of the structure and in somewhat 
gross predictions of the radiation of sound by the structure 
and of how the overall structure scatters external sound 
fields, there is some hope that a detailed knowledge and 
modeling of the internal structure is not really needed; some 
rough quantitative descriptors may suffice. One such descrip
tor is certainly the total internal mass, but it is evident that 
quantity alone would be insufficient for any prediction over a 
wide range of frequencies, especially if the internal structure 
has a large number of internal degrees of freedom. One 
cannot, for example, assume that any portion of the internal 
mass is rigidly bound to the outer shell if such mass is 
associated with a natural resonance frequency that is sub
stantially lower than the frequency with which the structure 
is being driven. Such mass is occasionally referred to as the 
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"sprung mass." The present authors are aware of various 
studies (Hwang, 1979a, b; Achenbach, Bjarnason, and Igusa, 
1992; Felsen and Guo, 1991; Bjarnason, Achenbach, and 
Igusa, 1992; Guo , 1992; Guo, 1993), in which the influence 
of internal degrees of freedom have been considered. In 
some cases, the considered number of degrees of freedom is 
relatively small, and in others the internal is a standard sort 
of structure such as a plate or a beam. It does appear, 
however, that there is still a need for relatively simple, albeit 
approximate, methods for handling cases for the internal 
sprung masses when there are many internal degrees of 
freedom and when the internal structure is of a complicated 
form. In such cases statistical averages would seem appropri
ate, and here again there is a rich prior literature. The 
present paper is directed primarily toward the prediction of 
the apparent damping of structures as contributed by the 
internals, and yields a result that, to the best of the present 
authors' knowledge, has been unknown up to the present. 

In formulating the approach taken in the present paper, 
the authors have been inspired somewhat by a sequence of 
papers by Soize and others (Soize, 1986; Chabas, Desanti, 
and Soize, 1986; Soize, Hutin, Desanti, David, and Chabas, 
1986; Soize, 1993) at ONERA in France who coined the 
suggestive term "fuzzy structure." The overall structure is 
divided conceptually into a master structure and a fuzzy 
substructure. The dynamical properties of the master struc
ture are known; those of the fuzzy substructure are known 
only in some statistical sense. Soize gives a formulation of 
how this statistical description can be taken into account in 
the prediction of some suitably averaged dynamical responses 
of the master structure, with the terminology and mathemati-
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cal steps phrased in the context of a finite element idealiza
tion of the master structure. The latter tends to obscure the 
basic physical ideas used in the formulation and has tended 
to impede their comprehension by the larger structural 
acoustics community. In any event, there is nothing especially 
sacrosanct concerning Soize's formulation, so the present 
paper begins afresh, although freely drawing on Soize's inno
vative idea of dividing a structure into a master structure and 
a fuzzy substructure. 

The principal conceptual hurdle of carrying out a formula
tion for some average dynamical behavior of a fuzzy structure 
is that of just how averages should be taken. In the present 
paper, such averages are taken over forcing terms, with time 
held fixed, in a dynamical model for general transient re
sponse. The appropriate dynamical model governing the be
havior of the system at a fixed frequency is then found by 
examination of the Fourier transform of the resulting 
smeared-out transient model. It is not clear that such a 
round-about procedure is absolutely necessary, although it 
avoids paradoxes that one might encounter when one consid
ers the possibility that the driving frequency might coincide 
with the resonance frequency of an internal degree of free
dom for which there is very little damping. [Some recent 
work we have seen by Igusa and Tang (1992) and by Xu and 
Igusa (1992), which refers in turn to earlier work by Sku-
drzyk, (1968, 1980) and by Dowell and Kubota (1985), sug
gests that a comparable formulation can be carried out 
without recourse to the transient case, providing one assumes 
the damping of the internal oscillations is sufficiently large. A 
formulation following such a train of thought, however, would 
tend to introduce some confusion concerning one of the 
present paper's main conclusions—that the response of the 
master structure, in the limit of small damping of the fuzzy 
internal structure, is independent of the magnitude of the 
damping.] 

Another distinction from Soize's earlier work is that the 
present paper is concerned with a specific example, rather 
than with a somewhat general class of cases. The specific 
example considered here, of a rectangular plate with an 
attached system of spring-mass oscillators, is regarded as a 
prototype of a structural acoustics system. Because it is a 
relatively explicit example, it is hoped that the reader will be 
able to perceive the basic ideas of the formulation relatively 
quickly. Once such are perceived, their application to more 
general systems should be apparent. 

2 Description of Basic Model 

To introduce and to explore basic mathematical and physi
cal concepts, a simplified model is considered here. The 
structure that undergoes vibrations consists in major part of a 
rectangular elastic plate (Fig. 1), which has a width a and 
length b and which is mounted in a rigid baffle. (The plate 
has some attachments on its backside, which are described 
further below.) The nominal location of the front face of the 
plate and of the baffle surface is the plane z = 0, and the 
plate extends from x = Q to x = a, from y = Q io y = b. 

^^ 

baffle ^ master structure 

fluid 

•v//////////;//////;//A >x 

fuzzy attachments 
Fig. 1 Idealized fuzzy structure studied in the present paper. The 
master structure Is a rectangular plate In an Infinite baffle with a 
compressible fluid on one side. The fuzzy substructure consists of 
a large number of attached oscillators with small damping. 

To demonstrate that the principal results of the paper 
hold regardless of whether or not there is fluid loading, the 
region in front of the plate, which is the region z > 0, is 
taken to be a semi-infinite halfspace filled with compressible 
fluid. The fluid has ambient density p and sound speed c. 
The vibrations of the structure and perhaps some external 
disturbance give rise to a fluctuating pressure field in this 
halfspace, which is described by a pressure field p{x,y,z,t). If 
the plate were rigid, then the surface would be a perfectly 
reflecting rigid plane, and the (external) pressure field which 
results in this limiting case is denoted by p^y.^x,y,z,t). Be
cause this external field causes the plate to vibrate there is an 
additional contribution, here termed the radiated wave, to 
the overall pressure disturbance, so that 

p{x,y,z,t) =p^^i(x,y,z,t) + p,^a(x,y,z,t) (1) 

This radiated wave can be regarded as caused by the plate's 
vibrations, in the sense that if one knew the z-component of 
the plate displacement w(x,y,t) explicitly, then one could 
calculate the radiated wave by an appropriate version (Pierce, 
1989) of the Rayleigh integral 

PrUx,y,Z,t) = 
p d^ .« , t , w ( f , r j , ? - c - i i ? ) 

ITT dt JQ ^ •'n •'n R 

where 

R=[(x n' + (y-vf + z' 
1/2 

d^dri (2) 

(3) 

is the distance from the integration point on the plate to the 
listener point. 

The plate is idealized as an Euler-Bernoulli-Kirchhoff 
plate with a mass w , per unit area and a plate bending 
modulus B ,. With A' attachments on the back side of the 
plate, the plate dynamics are consequently governed by 

m„, :r- + B 'pl dt' '"'^ dX^ dy' 
T T + T T ^ ^ -p{x,yfi,t) 

- Y.Ut)K^-x„)S{y-y„) (4) 
« = i 

this holding for x between 0 and a and for y between 0 and 
b. Here, as in Eq. (2), w{x,y,t) is the plate displacement in 
the +z direction, and p{x,y,Q,t) is the pressure on the front 
side of the plate. The quantity F„ is the force exerted on the 
plate in the negative-z-direction by an attachment at x =^ x„ 
and y =y„. Equivalently, F„ is the force in the positive-z-di-
rection exerted on the nth attachment by the plate, in accord 
with Newton's third law. These attachments are concentrated 
at points, and such is indicated by the product of Dirac delta 
functions S{x - x„) and (Sx - y„}, which appear as multi
plicative factors in each of the attachment force terms. 

The attachments themselves are simple spring-mass sys
tems with very light damping. The nth attachment is charac
terized by a mass M„. It is also characterized by a spring 
constant K„, which corresponds to incremental force per 
unit incremental elongation. Alternately, one can replace K„ 
by n^M„ where fl„ is the corresponding natural frequency 
in radians per second. The damping within any given attach
ment is characterized by a fraction of critical damping I, so 
that the dash pot constant is 2^„M„fi„. If z„(0 is the 
displacement of the mass M„ in the positive z-direction, then 
the force balance and constitutive relations yield the equa
tion of motion 

M„ 
dh„ 

+ 2f„M„n„ 
dZn _ dw(x„,y„,t) 

dt 

+M„^ll2„ - y^(x„,y„,t)] = 0 (5) 
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and the force Fit) is identified as 

F„{t) = M, (6) 

If the plate displacement w„(t) = wix^,y^,t) is regarded as 
given, then one can readily derive a solution to Eq. (5) for z„, 
this being a linear superposition of responses to the consecu
tive values of w during previous times, 

^«(0 = / ' vw„(r)G(; - T,a„,QdT (7) 

where 

G(f,n,o = 
1 
. 2 l l / 2 

d 

'It a + u- }e-f"' 

sin(n[l - CT^) (8) 

The force F„ is consequently given by 

F„(0 = M„~f wXT)G{t - T,il„,i„)dr (9) 

The overall problem of determining the plate vibrations is 
posed by Eqs. (1), (2), (3), (4), (8), and (9). These can be 
combined to give the somewhat cumbersome equation 

m„ dt 2 + ^ p l dx"- dy' 
W = -/'ext(-«.>'.0'0 

a^ .a i.hw{^,71,t-C-^R) 

Iv dt^ •'o •'o R 
d^drj 

d 

- E Kx-x„)8{y-y„)M„~^C W„(T) 

XG{t-T,iia„)dr (10) 

Here, in the radiative term, the source-listener separation 
distance R is understood to be evaluated at z = 0. 

The appropriate initial conditions are those imposed by 
causality, so that w(^x,y,t) and dw/dt vanish at all times 
before the external pressure field first begins to excite the 
plate. Once w{x,y,t) is determined, one can determine the 
radiated pressure field from Eq. (2). The interest in the 
present paper is almost exclusively with the last term in Eq. 
(10), this term being what accounts for the effects of the 
internal structure on the plate vibrations and on the radiated 
sound field. 

3 Master Structure with Fuzzy Attachments 
The overall structure introduced above consists of a plate 

with a set of attached oscillators. This is here considered as a 
fuzzy structure in the sense used by Soize. The plate per se is 
taken to be what Soize terms a master structure, and its 
properties (namely, the width a, the length b, the mass 
density mp,, and the bending modulus B^^) are taken to be 
known. The properties of the spring-mass attachments are 
imperfectly known, and this portion of the structure is re
ferred to as the fuzzy substructure. Individual members of 
this set of attachments are referred to as fuzzy internals or 
simply as fuzzies. Thus one does not necessarily know the 
total number Â  of attachments, the locations ix„,y„) at 
which they are attached, the individual masses M„, the 
damping parameters, f„, or the corresponding natural fre
quencies fl„. 

Certain statistical properties of the fuzzy substructure, 
however, are taken to be known at the outset. One can 

conceive of a statistical ensemble of such substructures, from 
which any particular realization is drawn according to partic
ular rules. The most pertinent statistical average which may 
be presumed known is the mass {ab)rnp{Q,) of all those 
portions of the substructure which have natural frequencies 
less than any specified angular frequency H. (The plate area 
iab) is included as a multiplicative factor in this definition, so 
that mpiil) will represent the fuzzy mass per unit area of 
master structure surface that on the average corresponds to 
natural frequencies less than H. Note that we are requiring a 
priori knowledge of a function rather than of just one or two 
parameters.) The total mass of the substructure is {ab)mp{<x>). 
The mass of all the attachments that have natural frequen
cies lying within a given frequency band between fl and 
n -I- rfn is {ab\dmp/dD.)dQ.. 

Apart from the information concerning masses, the statis
tical assumptions made here concerning the fuzzy substruc
ture conform to what may be termed the principle of maxi
mum ignorance. The number N of attachments, although 
unknown, is presumed very large. For any given attachment, 
the probability of its being attached within any area element 
AxAy is simply AxAy/(afc). 

One can easily convince oneself that the exact value of the 
total number of attachments Â , given that it is large, is not 
important by considering the case of two identical attach
ments, each of mass M, and each having natural frequency 
fl. If these two attachments are at identically the same point 
or in very close proximity, then their net effect is the same as 
that of a single attachment, also with natural frequency fl, 
but with twice the mass. Thus the concept of modal density, 
which plays a dominant role in the theory commonly referred 
to as statistical energy analysis, plays no role in the present 
formulation. 

4 Smeared Fuzzies 
The general principles described above concerning the 

fuzzy attachments allow one to make a wide-sweeping and 
very important approximation for the fuzzy attachment term 
on the right side of Eq. (10). This term is rewritten here for 
convenience of referral as 

Fuzzy = - £ 8{x-x^)8{y - y „ ) M „ - ^ £ W„(T) 
''d? 

xG(t-r,[l„,l„)dT (11) 

To decompose the sum in the above expression, one sup
poses first that the range of natural frequencies is broken up 
into small frequency bands, individual bands denoted by the 
subscript B. If ft^ is the upper limit of frequency band B, 
then the fith band consists of frequencies between Clg_j 
and ftfl, and it has a bandwidth 

(Ml)B = 0,B-0,B-i (12) 

One also supposes that the area of the plate is broken up 
into small rectangles, individual elements denoted by the 
subscripts i and j , there being NjNj elements in all. The 
partitioning in width and length is similar to that for fre
quency, with the ith width interval having a width 

(Ax)i =Xi -Xj. (13) 

and with analogous nomenclature for the ;th length interval. 
This allows one to write 

00 Nj Nj 

Fuzzy = E E E (Fuzzy)B,<,j (14) 
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where 

(Fuzzy) B,,,y 

= -i:S{x - x„)8(^y - y„)M„-^I^ W„{T) 

XG{t-T,n„,C„)dT 

xL'S(x-x„)S(y-y„)M„ (15) 

where the prime on the summation implies the restriction to 
values of n for which x„ is in the j'th width interval, y„ is the 
; th length interval, and H is in the 5 th frequency interval. 
We have also abbreviated 

G((t - T,fi) = JGit - T,a,C')p^{C)dC (16) 

where pAO is the probability density function for the 
fraction I of critical damping. It is assumed that the latter is 
statistically independent of the location of the point of at
tachment, of the mass, and of the natural frequency. 

The latter version of Eq. (15) assumes the area element 
width and length, and the frequency bandwidth, are suffi
ciently narrow that, for all the terms in the sub-sum, all of 
the fl„ can be well-approximated by fl^, and w^ir) can be 
approximated by w(xi,yj,T). Here we are tacitly assuming 
that the bending stiffness of the plate is sufficiently high that 
the displacement w(x,y,t) varies negligibly over the dimen
sions of any small area element. The nature of the plate 
model, with a fourth derivative rather than, say, a second 
derivative, allows such an assumption to be made. 

Recalling the manner in which the delta function is used 
in mathematical physics, one concludes, for reasons similar to 
those alluded to above, that it is consistent to replace the 
weighted sum over delta function products in (15) by a 
smeared-out version which has the same integral 

L'Six-x„)8(y-y„)M„ 

1 

(^xU^y)J 
L'M„mx)Uj(y) 

•-r r 
xi-vyj-

8(x-x„)8(y -y„)dxdy 

Mi 

( M ^ ' ^ ^ " ^ ^ " <"> 
where M^,y is the total mass of all the attachments which 
are (0 attached in width interval /, (ii) attached in length 
interval /, and (iii) have natural frequencies lying in fre
quency band B. The quantity Ujix) is unity if x lies in the 
interval (AJC); and is zero otherwise. 

According to the statistical assumptions outHned above, on 
the average one expects 

M^jj = (AxU^y)jj^{Ml)n (18) 

for the mass in frequency band B and in the area element 
AXjAyy. With the substitution of Eqs. (15) and (17) into (14), 
and with subsequent passage to a limit, one arrives at the 
result 

Fuzzy = - / 
dn, I dt • / : , 

w(x,y,r)G^(t - T,n)dT)dD, 

(19) 

Alternately, after an interchange of the order of integration, 
this becomes 

Fuzzy = •-inp(°°)~—^ w(x,y,T)Sp(t - T)dr (20) 
tit -^ — ra 

where 

'dntp _ 

= 0 if r < 0 (21) 

is what may be termed the fuzzy temporal memory function. 
As a result of the substitution (20), the overall equation 

(10) for the plate vibrations, previously described as some
what cumbersome, now becomes slightly less cumbersome, 
with the result 

w „ i — ^ + B^ 
P' <9/2 Sx^ dy' 

W = -/'ext(^.3',0,0 

lir dt^ JQ •'O R 

-^FM-T;!!' Hx,y,r)Sp(t - T)dr (22) 
Ot -̂  —00 

The principal achievement at this point is that an equation 
involving imprecisely known parameters has been replaced by 
one for which all of the relevant parameters are presumed 
known and whose solution must be deterministic. 

5 Fourier Transform Description 
Because interest is often in vibrations and sound radiation 

of nearly constant frequency, we here reexpress our govern
ing equation (22) in the frequency domain. For convenience, 
we regard our excitation and the resulting structural distur
bance as being transient and as being such that all requisite 
Fourier transforms exist. (This assures that the results, even 
if used for long term constant frequency excitation or nar
row-band noise excitation, will conform to the causality re
quirement.) 

One can consequently set 

^(x,y,t) = j w(x,y,u)e ""day 

so that, in accord with the Fourier integral theorem, 

1 
l'(x,y,a)) = r— f w(x,y,t)e''' •dt 

(23) 

(24) 

Application of the operator implicit on the right side of 
the latter to Eq. (22) consequently yields 

+ '^ T / 1 B e""^d^di) 
iTT-'o •'0 K 

nipM 0̂0 ^ 2 / Q / 00 . / , , , 

iTT •'-00 at Y -ttiY -'X 

XSp{-r')dr')dt (25) 

where, in the latter term, T has been replaced by f -f- T'. The 
quantity k is the acoustic wavenumber la/c. Carrying out the 
time integration in the last integral, and recognizing the 
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inverse transform of 8(a) - w'), then doing the w' integra
tion, yields 

dx"- dy^ 

With the above result in hand, one can now rewrite the 
Eq. (26) governing the plate dynamics in the following sug
gestive form 

-m m^,w + Bj — I + -TT U = -P.Ax,y,Q,oy) ~o>\m^, + m,^,^^,,]w - i(oR,,,^^,,w 

+ '^ o / n e t/^drj 
217 •'o •'0 R 

+ w^mp{oo)A(x,y,o))f° e-"''''Sp(-T')dT' (26) 

6 Fuzzy Damping 
The last term on the right side of Eq. (26) requires 

somewhat of an extended discussion as the requisite integra
tion is nontrivial, and the simple results that emerge have 
important interpretations. 

Our interest here is actually in situations where the frac
tion of critical damping ^ is very small for all oscillators. 
Since this is a quantity that is hardly ever known, even in a 
statistical sense, it is here assumed for simplicity that all 
oscillators have the same value for (, so that 

+B„ 
dx^ dy' 

+ V T } •* = -PextC^.y.O,^) 

Here 

'F.appa 

+ ̂ 9̂ / / p e'^HU'n (33) 
Z7^^ •'o R 

a. = f -77f I TTT . , . . , . , , , } ^ " (34) 0̂ dO. \ [ii2 _ ^2-|2 ^ [2^wflf 

is the apparent extra mass per unit area contributed to the 
master structure by the fuzzy substructure, while 

^•^dnip ICoi'^O. 

0 dO \ [ii2 _ „2-]2 + [2la>ilf 
\dVL (35) 

[1-^^] 
1/2 'dt 

1 i-'^dnin ( 1 f ^ 1 ,n 

is the apparent damping (units of force per unit area divided 
by velocity) imposed on the master structure by the added 
substructure. Thus, with the approximations made so far, the 

sinffifl — ^^l''^^f) (27) influence of the fuzzy substructure can be accounted for 
^ ' solely by replacing the mass of the master structure by a 

frequency dependent mass and by adding a frequency depen
dent damping to the dynamics of the master structure. 

dO. \ [1-^2]'^^ \" ' "dt 

,1/2 
sm[0,[l - S^Y t)\da. (28) 

The latter holds only for / > 0, it being understood that 
Sp(t) = 0 when t < 0. 

With the idealizations just described, one proceeds to seelc 
a simplified expression for 

2TTSP(W) = f e-"'^Sp{-T')dT' = \ e-"'Sp(t)dt 
•^ — 0 0 -^ — CO 

7 Small-Damping Limit 
For sufficiently small damping, the two parameters mp^^^^^^ 

and i?F,appar ^an be replaced by asymptotic limits that result 
when one lets ^ -> 0. The resulting expressions, which are 
derived further below, are 

F.appar = Pr/" 

R 
17-0)2 ^j^ 

• / : 

'dPhr. o 
F.appar 2 d(i 

(36) 

(37) 

mp{^)}a do. 2 / [ l - ^ 2 ] V 2 

| " ( B i e ' ^ i ' - B2e''^^')dt\dn 

'dfhf a - — - / 
;.(oo);o dO. 2[1 _ ^ 2 - | V 2 ^ ^ j A^ 

B< Bo . 
-J---^ da (29) 

where Pr indicates that the principal value of the integral is 
to be taken. 

To derive Eq. (36) from (34), one considers a nonzero 
value of 0) and lets e be a fixed positive parameter that is 
much less than unity and examines the integral 

Al-e) 

+ ,)^dmp { Q}[a'^ - u>^ + Ao)\^] 

dil 
where 

[n^ - ft,2f + [2iwilf 

y4i,2 = (^ii + w + n [ l - ^2] 
1/2 

1/2 

}dQ, 

(38) 

i ? i _ 2 = l - 2 ^ 2 ± 2 ; f [ l - f 2 ] 

Further algebra then yields the result 

1 .ocdnip I il[[l — lilai] 

(30) 

(31) 

A change of variable to u, where fl — &) = cou, transforms 
this to a form which can be further manipulated to 

l{e,0 = ojf 

J O 
dCL 

1 .-^dnip ( 0 2 [ n 2 - oP- + Aa)^(^] + 2i(a)^0,\ 
= r : / —::— ( ;; : / dCl 

mp(°°) JQ 

difif, 

dO, /n=(i + „), 

du (39) 

dO, [n^ - ft)2] + [2^wn] 
(32) 

where the quantities N^, N^, and D (N for numerator, and D 
for denominator) are simple polynomials in M^ and ̂ ^ JQ 
leading order in u^ and f '^, these quantities (with the omis-
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sion of a common factor of 4( ^ ^ + u'^)) are 

(40) 

(41) 

(42) 

Here the desirable aspect of having the integration limits in 
(38) symmetrically placed about (o becomes evident. The 
quantity uNg/D has no upper bound in the limit as f and u 
successively go to zero. However, this quantity is odd in u 
and consequently integrates out to zero for arbitrary nonzero 
f. Also, both N^/D and u^N^/D are bounded and approach 
limiting values of 5/4 and 1/2 as f -^ 0, then w -> 0. Conse
quently, one concludes that 

l i m / ( e , 0 
5 dm 

2e{ -0) 
4 da) 

p ^ ^d^mp 1 
+ -co'-

doj^ 
+ 0(e') (43) 

What is important from the standpoint of the derivation of 
Eq. (36) is that the ordered double limit, first £ -* 0, then 
e -» 0, exists and is identically zero. 

One can always split the integral in (34) into three inte
grals, from 0 to (1 - e)w, from (1 - e)co to (1 + e)(i), and 
from (1 + e)ft) to 00. For the first and last segments, the limit 
as ^ -» 0 is meaningful and exists, as long as e i= 0. For the 
middle segment, the same limit is 0(e). Consequently, the 
limit as ^ -^ 0 for the entire integral in (34) has to be 
the same as the limit of the sum of the ( -* 0 limits of just 
the first and third segments, with the limit e -> 0 applied to 
the sum of the two (rather than to each separately). The 
latter, however, is just what is implied by the operation of 
taking a principal value in Eq. (36), so the assertion is 
verified. 

In regard to the apparent damping constant i?/7,appar> 
because it may appear surprising that it is actually nonzero in 
the limit ^ -> 0, it is of interest to carry out the derivation of 
the approximation for small ( to 0((), rather than Oil). 
Doing so will allow one to assess when it is adequate to use 
the small damping limit. Deriving the explicit limiting expres
sions is an exercise in singular perturbation theory and in
volves local and global analysis (Bender and Orszag, 1978). 
One recognizes the integrand factor 

J(C,Cl,w) = 
2(0^0. 

[O^ - a)^Y + [2ia,ilf 
(44) 

and notes that, when ^ -* 0, it is singular at O = w and 
nonintegrable. To extract an integrand which is integrable in 
this limit one substracts off from drfip/dil whatever is neces
sary to obtain a second integrand factor that goes to zero as 
(O - (o)^ at the other factor's singularity. With reference to 
a Taylor's series of drhp/dO,, one recognizes the ordering 

dntp 

dn. 

drrip d^rrip , , , 
— ^ - ( O - a > ) — f = 0 ( [ f l - u)f) (45) 

ao3 dm ^ ' 

Consequently, the aforementioned objective is accomplished 
with the decomposition 

' dnip dthp 
R /^,appar dil do) 

- ( O - w)-
d^iUf 

J(C,il,w)dn, 

drrip ^» 
+ co^—— J(£,0.,w)dn 

do) •'0 

d^m 
oyi—-f ( (il- a))J((,n,w)dil (46) 

In the first integral, the overall integrand is finite at fl - <w 
even when ^ = 0, so it is all right to here set ^ to 0 in the 
argument of the integrand factor J((,0,,(o). This is accept
able for the desired approximation, because what results is 
correct to 0((). Such cannot be done, however, for the 
other two integral terms, although each of these integrals is 
independent of the detailed form of the function drfip/do). 

To evaluate the latter two integrals to O(^) , one breaks 
each integral into three segments: from 0 to (1 - e)b), from 
(1 - e)ft; to (1 -I- e)oi, and from (1 + e)w to «>. The quantity 
e is regarded as much less than unity but much larger than ^. 
We take it to be of the order of ^ ''^. In the integrations over 
the first and third segments, one expands the integrand, with 
fl held fixed, in a series in f, keeping only the first two 
terms, and changes the variable of integration to M = D,/(o. 
(The integration limits then become 0 and 1 - e for the first 
segment, and they become 1 + e and <» for the third seg
ment.) For the integration over the middle segment, one 
rescales by changing the variable of integration to ii = (fl — 
u))/lu>, then expands the integrand in a series in l, but now 
holding V fixed. (The integration limits for this middle seg
ment then become - e / ^ and e/^.) In the two cases of 
integration variable change, one has, respectively. 

{\/<a)i,M^ 

( l / f t ) 2 ) f ( f l - m)MD. 

{\/m)Ud^~-^^ 

2u(du Su^^'^du 

(u^ - 1) (M2 _ 1)^ 
(47) 

2u(u — l)(du 8M^(M - l)l^du 

(u' - 1) («2 - 1)^ 

(48) 

2 (u^ + 1) 

4(y2 + ly 
'du (49) 

( 1 / ^ 2 ) ^ ( 0 - a})JdCl ~ -^-^ —{1 - — 7\do 
2 (u^ + 1)\ v^ +\ 

(50) 

Here one notes that the second terms of (47) and (48) are of 
no consequence in the considered order of approximation 
because ^ ^ e ^ = o (^ ) and because ^Ve^ = o ( f ) . The sec
ond term of (49) and the first term of (50) are of no 
consequence because these are both odd in v. The third term 
of (49) and the second term of (50) are of no consequence 
because ^e = o( ̂ ) and [ '^/e = o( ̂ ) . 

These aforementioned deletions lead one to the integral 
expressions 

{\/m)lfjdCL ~ d 
0 / . . 2 

2udu 

{u^ - 1) ' 

1 vdu i-e/t. 1 vav !•«• Auau 
/ T ^ - 5 Z + i ^+oU) (51) 
^ - . / f 2 ( . 2 + l ) 'h^.(u'-W ^^' ^ > 

- co 

( i / w 2 ) ^ [ (n-(o)jdii~ d 
;2u{u — l)du 

0 (M2 - if 

,00 2u(u — l)du 
+ ^ / \ . 2 o(n (52) 

M + e (u'-iy 
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One notes, moreover, that 

, I _ J 2 M ( U — l)du ^ i - e 

•'o (u^-U^ Jo (u 

du 

(M2 - 1)" •'O (M + 1)" 

I i.\~e du \ ,\-f du 

0 M - 1 2 •'o + 2-'o M - 1 2-'o M + 1 

= 1 + - I n 6 - - I n ( 2 - 6 ) (53) 
2 - 6 • 2 

du ,« 2 M ( M — V)du ,«> c*i 

V ^ ( M ^ - I / '^ + e(u + \y 

I I rK du i-K du 
+ lim - / - / 

A:̂ <» 2 yi + eU — 1 h + eU + 1 

1 1 1 
= In € + - ln(2 + e) 

2 + 6 2 2 ^ ^ 
1 

+ — lim In 
2 A:-><» 

K- 1 

K+ 1 
(54) 

where the last term in the second version of Eq. (54) is 
identically zero. Thus the integrals in Eqs. (51) and (52) 
become 

- ( JdD.= -
>Jo 1 

i 
-t ( 1 - 0 

+ tan- ' (e / f ) + 5 + o ( 0 (55) 
(l + e ) ' - l ^''' ^ ' 

-^ ( (n- w)Jd[l = dl -

. | . 
2 - e + :; + TT In 

2 + e 2 

2 + e 
+ o(0 (56) 

The integrals evaluated above can be further simplified 
with the replacements 

tan- ' (e /^) 1-i 
2 e ' 
1 

(1 ± e) - 1 

l n ( 2 ± e ) ^ In 2; 

1 1 

~2^ " 4 
(57) 

which are consistent with the intent that the overall expres
sions be correct only to 0( f). Thus one arrives at the results 

COJO 
r7rfo=^-^+o(o 

Ja L 

—^[(n- a))Jdn = ^ + o(0 
ai •'o 

(58) 

(59) 

These in turn, when substituted into Eq. (46), yield the 
asymptotic approximation 

R F,appar 2 

•'o 

dntp 

d(o 

" / dnip 

\ dil 

dmp 

aw 

dnip 

d(i) 

+ ^ft)3 

- (n-

d^mp 

d(o^ 

d^nip 

dui 

a 
A 

(O^ - w^y 
dO. (60) 

The surprising aspect of this result is that it is not identically 
zero when ^ = 0. 

1 

0 . 8 

0 . 6 

0 . 4 

0 .2 

Fig. 2 Prototype distribution function for attached masses among 
natural frequencies. The quantity itffdl) Is the mass per unit area 
of all oscillators which have natural frequencies less than 11. The 
quantity Op Is a characteristic frequency of the fuzzy substructure 
and corresponds to that natural frequency for whl6h the density 
function dmfdl) I60, has a maximum. 

Q,p dmp 

mp' (ooy~3rr 

Fig. 3 Prototye density function for attached masses among natu
ral frequencies. The quantity [dm,.(Il)/dUlAO for small Allcor-
responds to the attached mass per unit area which Is associated 
with oscillators whose natural frequencies are between n and 
A + AO. The adopted prototype density function has a single maxi
mum, this occurring when il = ilf, where ilf Is a characteristic 
frequency of the fuzzy substructure. 

8 Prototype Mass-Natural-Frequency Distribution 
Although the function JfipiCL) is not necessarily known or 

of any simple form, it would seem advantageous from the 
standpoint of a quantitative assessment that one have some 
prototype function depending on a relatively small number of 
parameters as a reference. With this in mind, the following 
(Fig 2) is suggested 

nipin) = mp{oo)[l - e-"'/2nF] (61) 

so that 
dmp{Cl) 

dil 
= w,r(oo)—e /iiip-^ 

lip 

d^Mpin.) _ nj-
= mp('x)—-

2 2 
-a ymp 

dCl^ 
(62) 

The quantity dp is here termed the most probable reso
nance frequency of the fuzzy internals and is equal to that 
resonance frequency at which the mass per unit resonance 
frequency bandwidth is a maximum. The suggested density 
distribution of mass among resonance frequencies, given here 
by Eq. (62), is plotted in Fig. 3. This is in a dimensionless 
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mp, 

0 . 5 

- 0 . 5 

3 

Fig. 4 Apparent (frequency-dependent) mass per unit area added 
to tlie master structure (rectanguiar plate) by the fuzzy substruc
ture when the master structure is osciiiating at angular frequency 
oi. The ratio of apparent substructure mass to total substructure 
mass returns to value of unity when to = 0.86311,: and goes from 
positive to negative when ta = 1.641iip. 

form, with [0.p/mp('^)]dmp'(il)/dCl regarded as a function 
of the frequency ratio il/ilp. 

With the above introduced quantity substituted into Eq. 
(36), the apparent frequency-dependent mass per unit area 
added by the fuzzy substructure, in the ^ = 0 limit, is 

/^,appar •A-)H ^ n^ -^e-'''/^4dil 

^-"du 
__ i-'" U 

= Wc.(oo)Pr / 
JQ U - f} 

where in the latter expression the integration va 
been changed to w = Q.^/2i\%, and 77 abbreviates 

9 

(63) 

where in the latter expression the integration variable has 
I to w = Q}/2Vli, and n abbreviates 

(64) 

The integral in the latter version of (63) is readily ex
pressed in terms of the exponential integral, so that 

'^F.appar = W; . (a ' ) [ l - rje^' 'Ei(T7)] (65) 

where 

Ei(t,) = - P r / — r f f (66) 

The expression in Eq. (65) is plotted in Fig. 4 in a dimen-
sionless form, with the ratio mp^^^^^^/nifi,^) regarded as a 
function of the frequency ratio ay/dp. Although the choice of 
the mass density function in Eq. (36) is somewhat ad hoc, the 
qualitative shape of the curve in Fig. 4 is expected to be 
representative of realistic cases. In the limit of zero fre
quency, the apparent mass is the same as the total mass of 
the internals, as indicated by the value of unity for 
m ĵ jppgr/Wf (oa) when (D/Q,^ is zero. This must be so because, 
at such a frequency, all the springs appear so stiff that the 
fuzzy internals must move as if they were rigidly welded to 
the master structure. However, as the frequency first in
creases beyond zero, the apparent mass to be added to the 
master structure is predicted to be greater than the mass of 
the internals, as is indicated by the ratio mp^^^^^/rhpi^) 
being larger than unity. In this lower frequency range, the 
majority of the internal oscillators are being driven at below 
their resonance frequencies, so they are moving in phase with 
the master structure. Their displacements are larger than 

rhp{<x))Q,F 
2 

Fig. 5 Apparent (frequency-dependent) damping constant added 
to the master structure (rectangular plate) by the fuzzy substruc
ture when the master structure Is oscillating at angular frequency 
la. The general theory predicts the "plate dash-pot constant" R̂  
(damping force per unit area per unit oscillation velocity) to vary 
with fraction of critical damping ^ of attached oscillators in the 
limit of small i as the sum of a non-zero quantity Independent of i 
plus another quantity directly proportional to i. (a) Curves for 
various values of i based on the two term approximation, (b) 
Curves based on direct numerical evaluation of tlie Integral expres
sion that holds for arbitrary ^. 

that of their attachment points, so their kinetic energies are 
larger than would be expected were they rigidly bound to the 
master structure. As the frequency becomes larger this mass 
enhancement reaches a maximum, and the drops below the 
total internal mass when w = 0.863fl;,. The function goes 
negative when w = 1.6410,? and remains negative at all 
higher frequencies. The reason for this latter behavior is that 
the major portion of the internal mass is being driven at a 
frequency higher than their associated resonance frequen
cies, so that the internal mass motion tends to be 180 deg. 
out of phase with the plate motion. This phase opposition 
means that the forces exerted by the internals on the plate 
tend to be in the same direction as the plate acceleration, so 
the net effect is as if mass were being subtracted from the 
plate. 

With reference to the known asymptotic behavior of the 
exponential integral one infers that in the low frequency limit 

F.appar ~ mp{^)[\ + r, In {e-yr,}] (67) 
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d̂ V f̂Ioo)fV/l(C=0) 

oj/Clp 

Fig. 6 Coefficient of correction term for non-zero fraction ( of 
critical damping that is to be added to the value for i; = 0 of the 
apparent (frequency-dependent) damping constant added to the 
master structure (rectangular plate) by the fuzzy substructure when 
the master structure Is oscillating at angular frequency a>. The 
general theory predicts the "plate dash-pot constant"R^ (damping 
force per unit oscillation velocity) to vary with fraction of critical 
damping { of attached oscillators In the limit of small ( as the sum 
of a non-zero quantity independent of ( plus another quantity 
directly proportional to (. 

where y = .57721 is the Euler-Mascheroni constant. In the 
high frequency limit 

mp(oc') 
'f.iippar (68) 

The asymptotic validity of both of these limiting expressions 
is supported by the numerical values plotted in Fig. 4. 

The apparent damping Rp is plotted versus frequency for 
several values of the critical damping ratio f in Fig. 5. The 
upper version of this figure is based on the approximate 
expression of Eq. (60); the lower version was evaluated by 
direct numerical integration of Eq. (35). The limiting case of 
1 = 0 corresponds in both parts of the figure to Eq. (37). One 
should note that the derived small-damping limit is a very 
good approximation up to ^ = 0.2. The coefficient of the 
^-correction term [all terms in Eq. (60) that are directly 
proportional to ^] is plotted in Fig. 6. This latter figure is 
also in a dimensionless form, and one can note that the 
so-indicated dimensionless group involving the coefficient is 
at most of the order of 6. 

One should take particular note from both versions of Fig. 
5 that the ^ = 0 approximate version of Rp, that expression 
being [Tr(i)^/2]dlnp/da>, is ordinarily an excellent approxima
tion for any realistic value of f (up to, say, ^ = 0.1). 

9 Concluding Remarks 
The results in the preceding section support the assertion 

that the exact values of the damping in the fuzzy internal 
substructure are of little importance. The theoretical devel
opment presented here is consistent with the viewpoint that 
the actual absorption of energy by internal oscillators tends 
to be independent of the damping, given that the damping is 
small. There are undoubtedly a variety of mathematically 
equivalent ways of giving a "physical interpretation" to this 
result, and seeking such is important because any such co
gently phrased interpretation will help in the formulation of 
future research and in understanding the limitations of the 
result. A rough physical explanation offered here for this 
behavior is that the most important contributions come from 
those masses which are being driven near their resonance 
frequencies. The closer the driving frequency to the reso
nance frequency and the smaller the oscillator's actual damp
ing, the higher the limiting amplitude. However, the actual 

force exerted on the plate by the highly oscillating lightly 
damped oscillators driven at close to resonance remains 
finite, at least in an averaged sense, and approaches a limit 
when the number of oscillators becomes sufficiently large 
and when they are randomly dispersed on the surface. This 
"averaged force"is sufficient to account for the local effect of 
the fuzzy substructure on the master structure. 

In a certain sense, the results developed here have a 
relationship to an exact description analogous to that of fluid 
dynamic pressure to the dynamics of a large collection of 
small spherical balls moving within a large container with 
nearly rigid walls. The forces exerted by individual collisions 
with the walls are large and in rapid succession, but the laws 
of large numbers lead to the viewpoint that there is a 
continuous force smeared out over the walls, so that one can 
speak of a force per unit area. The attractive features of this 
thermodynamic asymptotic limit are (0 simplicity, and Hi) 
insensitivity of details of the overall system description. The 
result here has comparable features. A casual perusal and 
comparison of texts on thermodynamics with texts on statisti
cal mechanics suggests that really understanding just how 
well the limiting results derived here approximate specific 
systems will not be trivial. This does not mean the seeking of 
such an understanding should be abandoned at the outset, 
but one should be prepared to make tentative use (with 
possible support from laboratory and field experiment and 
from computational simulation experiments) of the limiting 
asymptotic results in the absence of any formulation of 
comparable simplicity or in the absence of explicit system-
parameter information that might be required by a more 
exact formulation, but which is difficult to obtain at the time 
of the immediate analysis. 

The model of a rectangular plate with point-attached 
masses was used in the present paper primarily to assist the 
pedagogical development. The authors believe the basic ideas 
presented here can be applied to a wide variety of structures, 
provided one is willing at the outset to look for asymptotic 
limits that apply when the number of degrees of freedom of 
the internal structure is large and when the details of the 
structure are taken as randomly distributed. The master 
structure, for example, could be taken as a cylindrical shell. 
The fuzzy substructure could be interconnected, masses could 
vibrate parallel to the surface of the master structure, so that 
traveling longitudinal and shear waves would excite the inter
nal structure. The authors foresee a wealth of interesting and 
practically important versions of the embryonic model intro
duced here and invite other members of the structural acous
tics community to participate in their development. 
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