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A formulation for predicting the effect of fuzzy attachments on the response of a master structure 
was originally provided by the fuzzy structure theory of Soize. An extension of Soize's theory was 
recently developed by Pierce et at. (ASME 1!)93 Winter Meeting, New Orleans, LA). This new 
formulation is applied to a finite p]iate strip simply supported in an infinite rigid baffle. An incident 
plane-wave pulse is incident upon the plate and the effect of the fuzzy attachments on the target 
strength is determined. The primary effect of a large number of 1-DOF fuzzy attachments is an 
apparent added mass and an apparent added damping to the plate. Both of these effects depend 
directly on the mass distribution of the I-DOF attachments with respect to their natural frequencies. 
A representative distribution is considered. It is found that if the most probable natural frequency of 
the fuzzy attachments coincides with a plate resonance, the amplitude at the target frequency is 
significantly reduced, the amount of reduction increasing as the total mass of all attachments 
increases. Plate resonances above the target frequency are shifi:ed upward, and those below are 
shifted downward. ̧  1995 Acoustical Society of America. 

PACS numbers: 43.40.At, 43.40.Rj 

INTRODUCTION 

The vibration reduction, or damping, effect of addiing a 
single one-degree-of-freedo•n (1-DOF) oscillator to a vibrat- 
ing structure is well documented in the literature. Of ]more 
recent interest is the effect of attaching a large number of 
1-DOF oscillators to a vibrating structure. Kobelev I investi- 
gated the effect of a large number of 1-DOF oscillators at- 
tached to a massless wall upon which a pressure wave is 
normally incident. The damping constants of the attachment 
were assumed to be negligible, and the stiffness and modal 
density of the attachments were known. Tl•e main effect of 
the attachments is an effective damping, analogous to Lan- 
dau damping in plasma physics. Xu and Igusa 2 investigated a 
1-DOF mass-spring system to which a large number of 
1-DOF substructures are attached. In this; formulation the 

attachments have known masses and damping constants, and 
the natural frequencies are evenly and closely spaced over a 
frequency band surrounding the resonance frequency of the 
main oscillator. The primary effect observed was that the 
attachments provided an effective damping to the main os- 
cillator. While these results are very important, both analyses 
assume a rather complete knowledge of the attachment pa- 
rameters. 

Soize 3-5 introduced the concept of a fuzzy structure, 
separating the complex structure under investigation into two 
parts: the master structure, which is known and can be mod- 
eled conventionally, and the fuzzy substructure which igs im- 
precisely known and cannot be modeled conventionally. The 
effects of the fuzzy substructure am described by an equiva- 
lent boundary impedance, the real and imaginary parts of 
which correspond to an added damping and mass loading, 
respectively. The fuzzy substructure is modeled as a system 
of I-DOF oscillators whose mass M,, damping •,, and 

natural frequencies fl. are known only in a probabilistic 
sense (i.e., mean values with random dispersion). The ensu- 
ing mathematical for•nulation is designed for finite element 
analysis, and requires a midfrequency signal processing 
technique. 6 Soize's fuzzy structure theory provides response 
spectra that compare well with simulations of actual struc- 
tures with complicated internal attachments. Application of 
Soize's fuzzy structure theory to canonical problems is 
somewhat hindered, however, by the difficulty of the math- 
ematics involved and by the signal processing method. 

Recent extensions to Soize's theory have resulted in the 
study of simpler structures with fuzzy attachments. Feit and 
Strasberg ? have developed a somewhat less fuzzy method 
along lines similar to the formulation of Kobelev. The 
present authors were privileged to collaborate with Pierce s 
on a simplification of Soize's fuzzy structure theory which 
yields promising results and is straightforward to implement. 
In this paper we will briefly review the i•nportant details and 
results of this simpler fuzzy inodel, and then apply these 
results to an investigation of the backscatter from a baffled 
plate strip to which a large number of fuzzy substructures are 
attached. 

I. A BRIEF REVIEW OF PIERCE'S FUZZY 
FORMULATION 

The model of the attachments used in the present paper 
is based entirely on the extension of Soize's fuzzy structure 
theory developed by Pierce s and the present authors. The 
main difference between this new description of a fuzzy at- 
tachment and the original theory of Soize is the •nanncr in 
which the fuzzy attachments are modeled. As was the case in 
the theory of Soize, the fuzzy attachments are modeled as 
1-DOF oscillators. The parameters of these oscillators are 
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governed by a principle of maximum ignorance. That is, one 
does not know the total number of attachments N, though N 
is assumed to be large, nor does one know their exact loca- 
tions (x• ,y•), or the mass MR, damping •',, and natural 
frequencies fl, of the individual attachments. What is 
known, however, is the distribution of the masses of the at- 
tachmerits with respect to their natural frequencies. This in- 
formation is contained in the function rrYF(fl) which repre- 
sents the combined mass (per unit area) of all fuzzy 
attachments which have natural frequencies below some 
specified frequency •. The quantity rrTF(oo) would then rep- 
resent the total mass of all attachments. Perhaps even more 
important than rrT• is the derivative of nYg with respect to •, 
drrYg/d•. This mass-frequency density is used in lieu of 
modal density which plays a key role in statistical energy 
analysis, in the problem studied by Kobelev, 1 and in the 
fuzzy structure theory of Soize. 3-5 

The present model of the fuzzy attachments removes the 
need for detailed knowledge of their dynamical response. 
Instead, one only needs to know the forces they exert on the 
master structure. For the problem investigated in the present 
paper, a transient sound pulse is incident upon a baffled plate 
strip, to the underside of which are attached N fuzzy attach- 
ments. The governing equation for this system is then 

d4 w 
-to2mplw+Bpl-•-i-x• =-p(x,y,0,to)- 

(1) 

where the left-hand side represents the bending motion of the 
plate, the first term on the right is the pressure on the surface 
of the plate, and the second term on the right accounts for the 
effect of the fuzzy attachments. 

The Pierce et al. extension of Soize's fuzzy structure 
theory employs a spatial averaging over patches small com- 
pared to a relevant wavelength, and a frequency averaging 
over narrow frequency bands. Also, it assumes transient ex- 
citation in the time domain, and transforms the response to 
the frequency domain. 

The primary result is that the fuzzy attachments add an 
apparent mass and an apparent damping to the master struc- 
ture. If it is assumed, for simplicity, that the damping of all 
the attachments is the same, •, then the effect of the fuzzy 
attachments appear to the master structure as an apparent 
added mass per unit area 

• [1-i2_ to212 + [ 2 •tol.]]2 [ dfI, (2) 
and an apparent added damping (units of force per unit area 
divided by velocity) 

} RF.•,v•= • [122_to2]•+[2•tofl]2 dll, (3) 
where to is a frequency component of the transient pulse 
driving the master structure. 

If the damping of the fuzzy attachments is taken to be 
very small, then Pierce 8 shows that the asymptotic limits of 
m F.appa r and R F,appa r as sr-o0 become 

master structure Baffle 

V/l/ • a•////////////////////.4 
FIG. 1. Plate strip with internal fuzzy attachments, simply supported in an 
infinite baffle. 

o dnT r •-•2 mF'appar=Pr dfl • dll, (4) 

,rto 2 drrT r 
Rr'•P•- • d• n=•' (5) 

where • indicates that the principal value of the inte•l is 
to be t•en. •e resulting expossion for •e app•ent added 
damping in Eq. (5) h• •so been obtained by Feit •d 
Stmsberg, 7 and is similar to the results of Ko•lev) •e 
fuzzy structure theo• of Soize 34 also predicts an added 
damping te•, •ough one must l•k rather h•d to find it in 
•e fo• simil• to Eq. (5) [see, for example, the expression 
for •(•) on p. 855 of ReL 5]. 

So then, the effect of the fuzzy attachments may be ac- 
counted for simply by adding to •e mass of •e master s•c- 
ture a frequency-de•ndent mass te• •d by adding a 
frequency-dependent damping to the dynamics of •e master 
s•cture. 

II. THEORETICAL FORMULATION 

The problem being investigated in the present paper in- 
volves a plate of width a and of infinite length, simply sup- 
ported in an infinite rigid baffle. The plate is taken as an 
Euler-Bemoulli-Kirchhoff plate with mass per unit area 
and bending modulus Bpl. On the underside of the plate are 
attached N fuzzy structures. Fluid exists only in the 
half-space, and is assumed to be light (air). A plane-wave 
pulse is incident on the plate and it is desired to obtain the 
far-field echo received in the backscattered direction. The 

goal is to observe the effect of the fuzzy attachments on the 
target strength. A cross section in the x-z plane of this sce- 
nario is shown in Fig. 1. 

A. Plate without attachments 

First consider the response of the plate alone, without 
attachments. The frequency domain equation governing the 
dynamics of the plate strip responding to an incident wave 
pulse is 

-- tO2mpll• ' + Bpl •x 4 = --/• (x,y, 0, to), (6) 
where • is the Fourier transform (time<=•frequency) of the 
normal plate displacement w. The term on the right-hand 
side of (6) represents the total pressure at the surface of the 
plate strip. The fluid in the half-space z>0 has ambient den- 
sity p and sound speed c. The vibrations of the structure and 
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perhaps some external disturbance give rise to a fluctuating 
pressure field in this half-space, which is described by a l:,res- 
sure field 13(x,y,z,to). If the plate were rigid, then the sur- 
face would be a perfectly reflecting rigid plane, and the 
blocked pressure field which results in this limiting case is 
denoted by tSu(x,y,z,t). Because this external field caases 
the plate to vibrate, there is an additional radiated contribu- 
tion to the overall pressure disturbance, so that 

13(x,y,z, to) =/5 bl(x,y,z, to) +/3 rad(X,y ,Z, to). (7) 

This radiated wave can be regarded as caused by the 
plate's vibrations, in the sense that if one knew the z com- 
ponent of the plate displacement ½(x,y,to) explicitly, •Ihen 
one could calculate the radiated wave by an appropriate ver- 
sion of the Rayleigh integral 9 

to2off e 'kR t3•ad(X'Y'Z'to)- 2•r ½(s e, r/,w) -•- d• de, 
(8) 

where 

R = [(x - •)2_{_ (y _ T])2_{_ z2] 1/2 . (9) 

is the distance from the integration point on the plate to, the 
listener point. If the region of analysis is taken to be the y= 0 
plane, then (8) becomes 

to2p •(•,to) dr l d•, 

where R = [(x - •)2 + z 2] •/2 and 

eik(R2 + r/2) 
f_• (R2+ r/2) 1/2 d.=i'tr"(o"(kR) 

(10) 

(11) 

with H(01) being the zeroth-order Hankel function of the first 
kind. m Thus the pressure radiated by the so'ip becomes 

ito2P Io•½(•,to)H(ol)(kR)d• (12) /3rad(X'Z' to)= 2 J 
and, evaluated at the surface of the strip, 

ito2P ;• ½( f, to)H(ol)(,tcl x- •l)df. 
(13) 

If the incident wave has the form 

/•inc(X,Z,to ) =Poei(to/c)x sin Oince-i(w/c)z cos 0i% (14) 
then the blocked pressure term is 

/•bl(X,0,60) = 2)o ei[tøxlc]sin 0inc (15) 
and the total pressure at the surface of the plate strip is 

l•(x,y,O,to) = 2Poei[Oxlc] si• Oi.• 

ito2P v•(•, to)H(o,)(]clx_ •l)d•. 2 

(16) 

In the far field, taking r as the distance from the ohser- 
vation point to the origin, 

2c) 1/2 I _i(•r/4)eikre_i(k/r)x• (17) 
If the backscatter direction is taken to be x/r=-sin 0i•, 
then the far-field radiated pressure becomes 

[ }O2Cto3 \ I/2 ei(wlc)r 

0 

One can then define the backscattering cross section in 
two dimensions as 

I•rad(•)l 2 
•b•k = lim2•r •2 (19) 

The t•get strength is appropriately defined for the two- 
dimensioual panel as 

•back 

TS= 10 log 2•Rref, (20) 
where Rre f is t•en to be 1 m. 

In order to calculate the backscattering cross section and 
t•get s•ength, the normal displacement of the plate must be 
specified. The simply supported bound• conditions for •e 
plate at x = 0 and x = a require •at w and •2wl•x2 vanish. 
This suggests that the spatial dependence of the normal dis- 
placement will be sinusoidal. Since the spatial dependence is 
not affected by the time/frequency Fourier transfern we can 
assume that the nomal displacement is of the form 

(7) ½(x)=• An sin x , (21) 
where the: A,, •e un•own. 

Substituting this form of the nomal displacement into 
(19) yields the backscattering cross section 

(22) 

The ratio A•/Po may be evaluated for the strip, without at- 
tachments, from an analysis of •e governing equation (6). 
Substitution of Eq. (21), and applying the principal of super- 
position, one can see that for the nth spatial mode, 

• A• sin • • 

• H[ •)(k•x- •l)d•. (23) 
It must be noted that this approach considers the fluid lead- 
ing to be light. That is, the modes of the plate •e not coupled 
to each other through the fluid, but rather each mode may be 
analyzed independently of all other plate modes. For heavy 
fluid loading the summation in (21) would have to be in- 
cluded in (23), thus coupling each mode to every other 
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mode, and the problem becomes substantially more difficult. 
Multiplying (23) through by sin[(p,da)x] and then in- 

tegrating over x and making use of the orthogonality of the 
spatial distribution function yields 

= - 2/3o(•o) sin x e ikx sin 0i• dx. (24) 

Theeonly unknowns are A n and •6 o; solving for the ratio 
A,JP o yields 

P o •0 eikX sin 0in e 
a 

(/ITf) ( 0 1 -I Xsin -- x n I)(/•lx-•l)d• dx (25) 
a 

This ratio is the key to the backscattering cross section and 
thus the target strength. By defining two constants 

Bpi'n '4 pa 
Cl=a2c2mp I and C2 =--, (26) /npl 

the denominator may be rearranged so that it does not ex- 
plicitly depend on the plate parameters, 

(7) -x-- = -- sin x e ikx sin 0me dx 
Po 

X{ [ ?/4C1 l]--i C2 
Xsin x u?(klx-Cl)a x . (27) 

C] controls the location of the plate resonance frequencies 
and C 2 controls the effect of the radiation damping (fluid 
loading). For a 1-cm-thick, 1-m-wide steel plate strip in air, 
C]-•0.1 and C2•0.01. 

B. Plate with fuzzy attachments 

Now consider the plate with N fuzzy attachments on the 
underside. The fuzzy attachments add an apparent mass and 
an apparent damping to the plate, defined in (4) and (5). The 
governing equation (6) then becomes 

d4• 

-- to2[rtlpl + m F,appar]•' -- i•ORF,appar• + Bpl • 
• . . ioa2p 

= -2p(•o)e,lo,•cl•,• •+ -•- fi•(•,•o) 
x H?(kl- (28) 

The equivalent of Eq. (27) for the plate with attachments is 

An (am4.•mp•)fl (_•) = = - sin X eikx sin 0inc dx 
Po 

[ [ n4Cl mF.appar RF,appar l 
/T/pl 0)///pl ] 

x •[• •(•1-•- •l)a• ax (29) 

•e bac•cattering cross section and target streng• may then 
be c•culated using (19) and (20). 

III. PROTOTYPE MASS-FREQUENCY DISTRIBUTION 

In Ref. 8 we consider a prototype mass-frequency dis- 
tdbution in order to study the physical concepts governing 
the effects of the apparent mass and damping due to the 
fuzzy attachments. This mass-frequency distribution has the 
form 

r•r(1•) = •(oo) [ 1 - e - a•-t2n }], (30) 
so that •e mass-frequency density function is 

Here •r(m) represents the total mass of all attachments, •d 
•F is the most probable nmural frequency of the fuzzy at- 
mchments. Figure 2 shows the suggested mass-frequency 
disffibution •d density, in nondimensional fo•. 

With this mass-frequency distribution, the app•ent 
frequency-dependent mass per unit area added by the fuzzy 
attachments (4), in the limit •0, is 

mF,app•=•F(•)• e-•2/2nb • • d• 
(32) 

•d the apparent added damping (5) becomes 

•O2 • •2/2n} (33) 
Using •e substitutions 

u= • and ,= 2a•' (34) 
the app•ent added damping becomes 

RF.app• = •F(m) •e- • (35) 
•d the appa•nt added mass simplifies to 

mF.appa=•r(m)Pr • e -• du 

= •(m)[ 1 - •e-" Ei( •)]. (36) 

where 
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FIG. 2. (a) Prototype mass-frequency distribution for the fuzzy attachments. 
fl represents the natural frequency of an individual aUachment, fit re, pre- 
sents the most probable natural frequency of the fuzzy attachments, and 
r•r(oo) is the total mass of all attachments. (b) Mass-frequency deasity 
d•rldFl. 

Ei(r/) =-Pr •-- dE f137) 
is the exponential integral function. n 

Figure 3 shows the apparent mass per unit area added to 
the plate by the fuzzy attachments, normalized to the total 
mass of all attachments and plotted versus the frequency 
(normalized to the most probable attachment natural fre- 
quency •r) at which the plate is vibrating. In the limit of 
zero frequency the apparent added mass is equal to the total 
mass of all attachments; the attachments appear to be rigidly 
connected to the plate. As the frequency increases above ;'•ero 
the apparent added mass is greater than the total mass of the 

0.5 
o 

-0.5 

0 1 2 3 4 5 

FIG. 3. Normalized apparent mass per unit area added to the plate strip by 
.the fuzzy attachments, in the limit •--,0, when the plate is vibrating with 
frequency to. 

0.75 

0.5 

0.25 

1 2 3 4 

/flr 

FIG. 4. Normalized apparent damping constant added to the plate strip by 
the fuzzy attachments, in the limit •r--,0, when the plate is vibrating with 
frequency to. 

attachments. In this frequency regime the majority of the 
attachments are being driven below their natural frequencies 
so that they are moving in phase with the plate, causing their 
displacements to be larger than that of their attachments 
points and thus their kinetic energies to be larger than if they 
were rigidly attached. Once the driving frequency increases 
beyond t0--0.863 fir the apparent added mass drops below 
the total attached mass. The apparent added mass becomes 
negative when to= 1.641f1• and remains negative for all 
higher frequencies. Now most of the attachments are being 
driven at frequencies higher than their natural frequencies 
and their corresponding motion is in opposite phase to that of 
the plate. The forces exerted on the plate by the attachments 
are in the same direction as the plate acceleration, as if mass 
were being subtracted from the plate. An alternate interpre- 
tation of this result is that the fuzzy attachments provide an 
added stiffness to the master structure. 

Figure 4 shows the normalized apparent damping added 
to the plate by the fuzzy attachments, plotted versus the nor- 
malized frequency at which the plate is being driven. While 
the prototype mass-frequency distribution function (30) may 
seem somewhat ad hoc, the apparent added mass and damp- 
ing as shown in Figs. 3 and 4 are representative of what one 
might expect for a substructure consisting of a large number 
of I-DOF oscillators. 

IV. COMPUTATIONAL FORMULATION 

All numerical computations in this paper were per- 
formed using MATHEMATICA 12 on a NeXTstation Turbo 
68040 @ 33 MHz). The integral 

sin -- sin x H ])(klx-d)df dx (38) 
• a 

•n the denominator of Eqs. (27) and (29) proved to be a very 
time-consuming calculation using NINTEGRATE, MATHEMATI- 
C^'S numerical integration function? A typical target 
strength plot like those shown in Fig. 5 took over 11 h to 
generate. To speed up the process, the integral in (38) was 
evaluated at ten points over the frequency range of interest, 
and the results for these ten points were fit with a polyno- 
mial. This polynomial fit was then used in place of the inte- 
gral for determining the target strength, with the awareness 
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FIG. 5. The dashed curves represent the target strength at 45 ø for the plate 
without any attachments. The solid curves represent the target strength at 
45 ø for the plate with fuzzy attachments. The total mass of t.he fuzzy attach- 
ments is 40% of the plate mass. (a) Ken=0.316, (b) K•a=l.265, (c) 
KFa = 2.846. 

that such a fit is valid only for the range of frequencies over 
which the integral was evaluated. Using the polynomial fit 
reduced the computation time to generate a single target 
strength plot from over 11 h to under 5 min, with no discern- 
ible difference in plot accuracy. 

RESULTS 

The plots of target strength versus ka in this section 
were calculated for a steel plate strip in air. The plate is 1 m 
wide and i cm thick. Figure 5 shows the effect of the fuzzy 
attachments on the target strength of the plate for a 45 ø in- 
cident plane wave. The dashed curves represent the target 
strength for the plate without any attachments and the solid 
curves represent the target strength for the plate with fuzzy 
attachments. The total mass of the fuzzy attachments is 40% 
of the plate mass. The most probable natural frequency of the 
attachments, C•t•, has been nondimensionalized as 
l•Falc=Kea. In Fig. 5(a) Kva=0.316, so that the most 
probable natural frequency of the attachments coincides with 
the first resonafice frequency of the plate. As shown in the 

0 I 2 3 4 5 6 7 8 

ka 

FIG. 6. A comparison between the backscatter from the plate with (solid 
curve) and without (dashed curve) attachments for normal incidence. The 
total mass of the attachments is 40% of the plate mass, and Ken= 1.265. 

plot, the first plate resonance is reduced in amplitude and 
lowered in frequency, while the other plate resonances are 
mostly unaffected. In Fig. 5(b) Kra= 1.265, so that the 
most probable natural frequency of the attachments coincides 
with the second resonance frequency of the plate. Now the 
first plate resonance is slightly lower in frequency, the fourth 
and fifth plate resonances are shifted higher in frequency, and 
the second and third resonances are completely damped out. 
In Fig. 5(c) Kea=2.846, so that the most probable natural 
frequency of the attachments coincides with the third reso- 
nance frequency of the plate. The first plate resonance is 
again slightly lower in frequency, the second resonance is 
greatly reduced in amplitude and lower ia frequency, the fifth 
peak .is shifted higher in frequency with greatly reduced am- 
plitude, and the third and fourth peaks have been removed. 
All three cases agree with what one would expect in light of 
the apparent added mass and damping of the form shown in 
Figs. 3 and 4. For frequencies below t•F (ka<Kea) the 
apparent total combined mass of plate and attachments is 
larger than the actual combined mass, thus causing resonance 
frequencies to shift downward in frequency. Similarly, at fre- 
quencies above lie (ka>KFa) the apparent total combined 
mass of plate and attachments is less than the actual com- 
bined mass, thus causing resonance frequencies to shift up- 
ward in frequency. For frequencies within the range 
1 <g/lie<3 (K•a<ka<3KFa) the apparent added damp- 
ing ,is significant, severely damping any resonance peaks 
within this range. 

Figure 6 compares the backscatter from the plate with- 
out attachments (dashed curve) and with attachments (solid 
ct/•ve) for normal incidence. The total mass of the attach- 
ments is 40% of the plate mass and Kra = 1.265. As ex- 
l•cted for normal incidence, the even numbered modes of 
the simply supported strip are not excited, and thus they are 
absent in both curves. 

Figure 7 compares the effect of light and heavy fuzzy 
attachments. The dashed curve shows the target strength 
from the plate when the total mass of the attachments is 1% 
of the plate mass. The solid curve is for a total attachments 
mass equal to the plate mass. For both curves the angle of 
incidence is 45 ø and Kfa = 1.265. As the total attached mass 
increases, the peaks above and below Kea are shifted up- 
ward and downward, respectively, with frequency, and the 
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FIG. 7. Dependence of target strength on total mass of attachments: 
(dashed) total mass of atlachmeuts is I% of plate mass: (solid) total attached 
mass equals plate mass. Kt-a= 1.265. 

peaks in the neighborhood of Kt,a are damped out com- 
pletely. Increasing the total mass of the fuzzy attachments 
amplifies their effect (i.e., greater damping of targeted tnodes 
and greater frequency shift of resonance frequencies). How- 
ever, it is the distribution of the attachments' mass with natu- 

ral frequency that determines which modes are damlx:d out 
and which are shifted in frequency. This suggests that the 
distribution of the mass of the attachments with respect to 
their natural frequencies plays a more important role than the 
total mass of the attachments. 

Vl. CONCLUSIONS 

The extension of Soize's fuzzy structure theory, devel- 
oped by Pierce et at., 8 predicts that the primary effects of a 
large number of I-DOF fuzzy attachments are an added 
frequency-dependent mass per unit area and an added 
frequency-dependent damping to the structure to which they 
are attached. Application to canonical problems is very easy; 
simply add these terms to the governing equation of the sys- 
tem under investigation. In this paper the investigated system 
was a finite width infinite length plate strip simply supported 
in an infinite, rigid baffle, with attachments underneath, and 
interrogated by an incident plane pulse. The effect of the 
fuzzy attachments was determined through analysis of the 
backscattered target strength. 

Analyzing the mass loading effect of the fuzzy z ttach- 
ments, it was seen that for fuzzy attachments being driven 
below their natural frequencies the apparent added mass is 
positive, thus lowering the resonance frequencies of the first 
few modes of the plate. For fuzzy attachruents being driven 
above their natural frequencies this appa[ent added mass is 
negative, raising the resonance frequencies of the higher 
modes of the plate. The fuzzy attachments also prov de an 
apparent added damping to the plate. The most probable 

natural frequency of the attachments may be adjusted so that 
this added damping completely wipes out selected plate reso- 
BanGes, 

It should be emphasized that the long-term goal of this 
research is not to determine the effects of backscattering 
from objects with attached !-DOF oscillators. In many vi- 
broacoustic problems complicated substructures are often in- 
accessible to conventional modeling. The question then be- 
comes how one simply account for these attached 
substructures and their effect on the primary (master) struc- 
ture. In this paper it has been shown that the Pierce et al. 
extension to Soize's fuzzy structure theory does, in fact, re- 
sult in an apparent damping which can significantly alter 
backscattering from a complex structure. Having passed the 
first test, therefore, it is clear that additional testing and re- 
finement of the Pierce et al. extension to Soize's theory 
should be undertaken. 
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